
/6)�3URJUDPPHU
V�*XLGH

Version 3.2
Fourth Edition, August 1998

3ODWIRUP�&RPSXWLQJ�&RUSRUDWLRQ

/6)�3URJUDPPHU¶V�*XLGH

Copyright © 1994-1998 Platform Computing Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, electronically stored, or reduced to machine readable form without prior
written consent from Platform Computing Corporation.

Although the material contained herein has been carefully reviewed, Platform Computing
Corporation does not warrant it to be free of errors or omissions. Platform Computing
Corporation reserves the right to make corrections, updates, revisions or changes to the
information contained herein.

UNLESS PROVIDED OTHERWISE IN WRITING BY PLATFORM COMPUTING
CORPORATION, THE PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO
USE THIS PROGRAM.

LSF, LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, LSF Make, LSF Analyzer, LSF
Parallel, Platform Computing, and the Platform Computing and LSF logos are trademarks of
Platform Computing Corporation.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Printed in Canada
LSF Programmer’s Guide iii

Revision Information for LSF Programmer’s Guide

(GLWLRQ 'HVFULSWLRQ

First This document describes the Application Programming Interfaces of LSF
version 2.2

Second Revised and redesigned to describe LSF 3.0

Third Revised and redesigned to describe LSF 3.1

Fourth Revised to describe the new features of LSF 3.2
iv

Contents

Preface . ix
Audience . ix
LSF Suite 3.2 . ix
Related Documents . x
Technical Assistance . xi

1 - Introduction. 1
LSF Product Suite and Architecture . 1

LSF Base System . 3
Application and LSF Base Interactions . 4
LSF Batch System . 5
LSF JobScheduler System . 7

LSF API Services . 7
LSF Base API Services . 7
LSF Batch API Services . 10

Getting Started with LSF Programming. 12
lsf.conf File. 12
LSF Header Files . 12
Linking Applications with LSF APIs . 13
Error Handling . 14

Example Applications . 15
Example Application using LSLIB . 15
Example Application using LSBLIB. 16

Authentication . 17

2 - Programming with LSLIB . 19
Getting Configuration Information. 19

Getting General Cluster Configuration Information. 19
Getting Host Configuration Information . 22

Handling Default Resource Requirements . 26
Getting Dynamic Load Information . 28

Getting Dynamic Host-Based Resource Information 28
LSF Programmer’s Guide v

Contents
Getting Dynamic Shared Resource Information . 32
Making a Placement Decision . 36
Getting Task Resource Requirements . 38
Using Remote Execution Services . 40

Remote Execution Mechanisms . 40
Initializing an Application for Remote Execution 42
Running a Task Remotely . 43

3 - Programming with LSBLIB . 47
Initializing LSF Batch Applications. 47
Getting Information about LSF Batch Queues. 48
Getting Information about LSF Batch Hosts . 52
Job Submission and Modification . 56
Getting Information about Batch Jobs. 63

LSF Batch Job ID . 64
Job Manipulation . 70

Sending a Signal To a Job . 71
Switching a Job To a Different Queue . 72
Forcing a Job to Run . 73

Processing LSF Batch Log Files . 75

4 - Advanced Programming Topics. 83
Getting Load Information on Selected Load Indices . 83

Getting a List of All Load Index Names . 83
Displaying Selected Load Indices. 84

Writing a Parallel Application . 86
ls_rtask() Function. 87
Running Tasks on Many Machines . 88

Finding out Why the Job Is Still Pending . 90
Reading lsf.conf Parameters . 91
Signal Handling in Windows NT . 93

Job Control in a Windowed Application. 94
Job Control in a Console Application . 97

A - List of LSF API Functions . 99
LSLIB Functions . 99

Cluster Configuration Information . 99
Load Information and Placement Advice . 100
Task List Manipulation . 101
Remote Execution and Task Control . 101
vi

Remote File Operation . 103
Administration Operation . 104
Error Handling . 104
Miscellaneous . 104

LSBLIB Functions. 105
Initialization. 105
LSF Batch System Information . 105
Job Manipulation . 106
Job Information . 106
Event File Processing . 107
LSF Batch Administration . 107
Calendar Manipulation . 107
Error Handling . 108

Index . 109
LSF Programmer’s Guide vii

Contents
viii

Preface

Audience

This guide provides tutorial and reference information for programmers who want to
create programs that use the features of the Load Sharing Facility (LSF) software.

You should be familiar with the concepts described in the LSF User’s Guide as well as
with C programming in UNIX and/or Windows NT environments. If you are going to
write programs using the calendars and events of the LSF JobScheduler, you should
also be familiar with the LSF JobScheduler User’s Guide.

LSF Suite 3.2

LSF is a suite of workload management products including the following:

LSF Batch is a batch job processing system for distributed and heterogeneous
environments, which ensures optimal resource sharing.

LSF JobScheduler is a distributed production job scheduler that integrates
heterogeneous servers into a virtual mainframe or virtual supercomputer

LSF MultiCluster supports resource sharing among multiple clusters of computers
using LSF products, while maintaining resource ownership and cluster autonomy.

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.
LSF Programmer’s Guide ix

Preface
LSF Parallel is a software product that manages parallel job execution in a production
networked environment.

LSF Make is a distributed and parallel Make based on GNU Make that simultaneously
dispatches tasks to multiple hosts.

LSF Base is the software upon which all the other LSF products are based. It includes
the network servers (LIM and RES), the LSF API, and load sharing tools.

There are two editions of the LSF Suite:

LSF Enterprise Edition

Platform’s LSF Enterprise Edition provides a reliable, scalable means for organizations
to schedule, analyze, and monitor their distributed workloads across heterogeneous
UNIX and Windows NT computing environments. LSF Enterprise Edition includes all
the features in LSF Standard Edition (LSF Base and LSF Batch), plus the benefits of LSF
Analyzer and LSF MultiCluster.

LSF Standard Edition

The foundation for all LSF products, Platform’s Standard Edition consists of two
products, LSF Base and LSF Batch. LSF Standard Edition offers users robust load
sharing and sophisticated batch scheduling across distributed UNIX and Windows NT
computing environments.

Related Documents

The following guides are available from Platform Computing Corporation:

LSF Installation Guide
LSF Batch Administrator’s Guide
LSF Batch Administrator’s Quick Reference
LSF Batch User’s Guide
LSF Batch User’s Quick Reference
LSF JobScheduler Administrator’s Guide
LSF JobScheduler User’s Guide
x

LSF Analyzer User’s Guide
LSF Parallel User’s Guide
LSF Programmer’s Guide

Online Documentation

• Man pages (accessed with the man command) for all commands
• Online help available through the Help menu for the xlsbatch, xbmod, xbsub,

xbalarms, xbcal and xlsadmin applications.

Technical Assistance

If you need any technical assistance with LSF, please contact your reseller or Platform
Computing’s Technical Support Department at the following address:

LSF Technical Support
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

Tel: +1 905 948 8448
Toll-free: 1-87PLATFORM (1-877-528-3676)
Fax: +1 905 948 9975
Electronic mail: support@platform.com

Please include the full name of your company.

You may find the answers you need from Platform Computing Corporation’s home
page on the World Wide Web. Point your browser to www.platform.com.

If you have any comments about this document, please send them to the attention of
LSF Documentation at the address above, or send email to doc@platform.com.
LSF Programmer’s Guide xi

1 Introduction

This chapter gives an overview of the LSF system architecture and the load sharing
services provided by the LSF API, introducing their components. It also demonstrates
how to write, compile, and link a simple load sharing application using LSF.

LSF Product Suite and Architecture

LSF is a layer of software services on top of UNIX and Windows NT operating systems.
LSF creates a single system image on a network of heterogeneous computers such that
the whole network of computing resources can be utilized effectively and managed
easily. Throughout this guide, LSF refers to the LSF suite, which contains the following
products:

LSF Base

LSF Base provides the basic load-sharing services across a heterogeneous
network of computers. It is the base software upon which all other LSF
functional products are built. It provides services such as resource
information, host selection, placement advice, transparent remote execution
and remote file operation, etc.

LSF Base includes Load Information Manager (LIM), Remote Execution Server
(RES), the LSF Base API, lstools that allow the use of LSF Base to run simple
load-sharing applications, lstcsh, and lsmake.

LSF Batch

LSF Batch is a distributed batch queuing system built on top of the LSF Base.
The services provided by LSF Batch are extensions to the LSF Base services.
LSF Batch makes a computer network a network batch computer. It has all the
LSF Programmer’s Guide 1

Introduction1
features of a mainframe batch job processing system while doing load
balancing and policy-driven resource allocation control.

LSF Batch relies on services provided by the LSF Base. It makes use of the
resource and load information from the LIM to do load balancing. LSF Batch
also uses the cluster configuration information from LIM and follows the
master election service provided by LIM. LSF Batch uses RES for interactive
batch job execution and uses the remote file operation service provided by RES
for file transfer. LSF Batch includes a Master Batch Daemon (mbatchd)
running on the master host and a slave Batch Daemon (sbatchd) running on
each batch server host.

LSF JobScheduler

LSF JobScheduler is a network production job scheduling system that
automates the mission-critical activities of a MIS organization. It provides
reliable job scheduling on a heterogeneous network of computers with
centralized control. LSF JobScheduler reacts to calendars and events to
schedule jobs at the correct time on the correct machines.

Like LSF Batch, LSF JobScheduler is built on top of the LSF Base. It relies on
LSF Base in resource matching, job placement, cluster configuration, and
distributed file operation. LSF JobScheduler supports calendars, file events,
and user defined events in scheduling production jobs.

LSF MultiCluster

LSF MultiCluster extends the capabilities of the LSF system by sharing the
resources of an organization across multiple cooperating clusters of
computers. Load sharing happens not only within the clusters but also among
them. Resource ownership and autonomy is enforced, non-shared user
accounts and file systems are supported, and communication limitations
among the clusters are also considered in job scheduling.

LSF consists of a number of servers running as root on each participating host in an LSF
cluster and a comprehensive set of utilities built on top of the LSF Application
Programming Interface (API). The LSF API consists of two libraries:

• Basic LSF services are accessible to applications through LSLIB, the LSF Base
library.
2

1

• Job scheduling and processing services are accessible through LSF Batch library,
LSBLIB. This library allows applications to get services from LSF Batch and LSF
JobScheduler.

LSF Base System

Figure 1 shows the components of the LSF Base and their relationship.

Figure 1. LSF Base Architecture

LSF Base consists of two servers, the Load Information Manager (LIM) and the Remote
Execution Server (RES), and the Load Sharing Library (LSLIB). LSF Base provides the
basic load sharing services across a heterogeneous network of computers.

An LSF server host is a host that runs load-shared jobs. The LIM and RES run on every
LSF server host. They interface directly with the underlying operating systems and
provide users with a uniform, host independent environment.

One of the LIMs acts as the master. The master LIM is chosen among all the LIMs
running in the cluster based on the configuration file settings. If the master LIM
becomes unavailable, the LIM on the next configured host will automatically take over.

The LIM on each host monitors its host's load and reports load information to the
master LIM. The master LIM collects information from all hosts and provides that
information to the applications.

The RES on each server host accepts remote execution requests and provides fast,
transparent, and secure remote execution of tasks.

...

Load Information Manager Remote Execution Server

LSLIB LSF Base System API

LSF Server Daemons

Operating Systems

Load Information Manager Remote Execution Server

LSLIB

Windows
NT

SunOS/
Solaris

Cray
UNICOS

Digital
ALPHA

HP-UX/
HPPA

SGI
IRIX

LinuxIBM
AIX
LSF Programmer’s Guide 3

Introduction1
Application and LSF Base Interactions

The diagram below shows the typical interactions between an LSF application and the
LSF Base.

Figure 2. LIM, RES, LSLIB and Applications

In order to find out the information about the LSF clusters, an application calls the
information service functions in the LSLIB which then contact the LIM to get the
information. If the information requested is only available from the master LIM, then
LSLIB will automatically send the request to the master host.

To run a task remotely, or to perform a file operation remotely, an application calls the
remote execution or remote file operation service functions in the LSLIB, which then
contact the RES to get the services.

Local HostLocal Host Remote HostRemote Host

Master HostMaster Host

LIM

LIM

LIM

RES

LSLIB

Application

Remote
Tasks

Other LIMs
4

1

The LIM on individual machines communicate periodically to update the
information they provide to the applications.

LSF Batch System

LSF Batch is a layered distributed load sharing batch system built on top of the LSF
Base. The services provided by LSF Batch are extensions to the LSF Base services.
Application programmers can access the batch services through the LSF Batch Library,
LSBLIB.

Figure 3. Structure of LSF Batch System

LSF Batch accepts user jobs and holds them in queues until suitable hosts are available.
LSF Batch runs user jobs on LSF Batch server hosts, those hosts that a site deems
suitable for running batch jobs.

LSF Batch services are provided by one mbatchd (master batch daemon) running in
each LSF cluster, and one sbatchd (slave batch daemon) running on each batch server
host.

LSF Services

LSF Batch API

Server Daemons

LSF Base System

mbatchd sbatchd

LSBLIB
LSF Programmer’s Guide 5

Introduction1
LSF Batch operation relies on the services provided by the LSF Base. LSF Batch contacts
the master LIM to get load and resource information about every batch server host.

Figure 4. The Operation of LSF Batch System

mbatchd always runs on the host where master LIM runs. The sbatchd on the master
host automatically starts the mbatchd. If the master LIM moves to a different host, the
current mbatchd will automatically resign and a new mbatchd will be automatically
started on the new master host.

User jobs are held in batch queues by mbatchd, which checks the load information on
all candidate hosts periodically. When a host with the necessary resources becomes
available, mbatchd sends a job to the sbatchd on that host for execution. When more
than one host is available, the best host is chosen.

Once a job is sent to an sbatchd, that sbatchd controls the execution of the job and
reports job status to mbatchd.

sbatchd sbatchd

mbatchd

sbatchd

Master LIM

... ...

config
files

config
files

log
files

log
files

Job Job
6

1

The log files store important system and job information so that a newly started
mbatchd can restore the status of the previous mbatchd easily. The log files also
provide historic information about jobs, queues, hosts, and LSF Batch servers.

LSF JobScheduler System

LSF JobScheduler shares the same architecture and job processing mechanism. In
addition to services provided by LSF Batch, LSF JobScheduler also provides calendar
and event processing services. Both LSF Batch and LSF JobScheduler provides API to
applications via LSBLIB.

Note
In the reminder of this Guide, all descriptions about LSF Batch also apply to LSF
JobScheduler unless explicitly stated otherwise.

LSF API Services

LSF services are natural extensions to operating system services. LSF services glue
heterogeneous operating systems into a single, integrated computing system.

LSF APIs provide easy access to the services of LSF servers. The API routines hide the
details of interactions between the application and LSF servers in a way that is
platform independent.

LSF APIs have been used to build numerous load sharing applications and utilities.
Some examples of applications built on top of the LSF APIs are lsmake, lstcsh,
lsrun, LSF Batch user interface, and xlsmon.

LSF Base API Services

The LSF Base API (LSLIB) allows application programmers to get services provided by
LIM and RES. The services include:
LSF Programmer’s Guide 7

Introduction1
Configuration Information Service

This set of function calls provide information about the LSF cluster configuration, such
as hosts belonging to the cluster, total amount of installed resources on each host (for
example, number of CPUs, amount of physical memory, and swap space), special
resources associated with individual hosts, and types and models of individual hosts.

Such information is static and is collected by LIMs on individual hosts. By calling these
routines, an application gets a global view of the distributed system. This information
can be used for various purposes. For example, the LSF command lshosts displays
such information on the screen. LSF Batch also uses such information to know how
many CPUs are on each host.

Flexible options are available for an application to select the information that is of
interest to it.

Dynamic Load Information Service

This set of function calls provide comprehensive dynamic load information collected
from individual hosts periodically. The load information is provided in the form of
load indices detailing the load on various resources of each host, such as CPU,
memory, I/O, disk space, and interactive activities. Since a site-installed External LIM
(ELIM) can be optionally plugged into the LIM to collect additional information that is
not already collected by the LIM, this set of services can be used to collect virtually any
type of dynamic information about individual hosts.

Example applications that use such information include lsload, lsmon, and xlsmon.
This information is also valuable to an application in making intelligent job scheduling
decisions. For example, LSF Batch uses such information to decide whether or not a job
should be sent to a host for execution.

These service routines provide powerful mechanism for selecting the information that
is of interest to the application.

Placement Advice Service

LSF Base API provides functions to select the best host among all the hosts. The
selected host can then be used to run a job or to login to. LSF provides flexible syntax
for an application to specify the resource requirements or criteria for host selection and
sorting.
8

1

Many LSF utilities use these functions for placement decisions, such as lsrun,
lsmake, and lslogin. It is also possible for an application to get the detailed load
information about the candidate hosts together with a preference order of the hosts.

A parallel application can ask for multiple hosts in one LSLIB call for the placement of
a multi-component job.

The performance differences between different models of machines as well as the
number of CPUs on each host are taken into consideration when placement advice is
made, with the goal of selecting qualified host(s) that will provide the best
performance.

Task List Manipulation Service

Task lists are used to store default resource requirements for users. LSF provides
functions to manipulate the task lists and retrieve resource requirements for a task.
This is important for applications that need to automatically pick up the resource
requirements from user’s task list. The LSF commands lsrtasks uses these functions
to manipulate user’s task list. LSF utilities such as lstcsh, lsrun, and bsub
automatically pick up the resource requirements of the submitted command line by
calling these LSLIB functions.

Master Selection Service

If your application needs some kind of fault tolerance, you can make use of the master
selection service provided by the LIM. For example, you can run one copy of your
application on every host and only allow the copy on the master host to be the primary
copy and others to be backup copies. LSLIB provides a function that tells you the name
of the current master host.

LSF Batch uses this service to achieve improved availability. As long as one host in the
LSF cluster is up, LSF Batch service will continue.

Remote Execution Service

The remote execution service provides a transparent and efficient mechanism for
running sequential as well as parallel jobs on remote hosts. The services are provided
by the RES on the remote host in cooperation with the Network I/O Server (NIOS) on
the local host. The NIOS is a per application stub process that handles the details of the
LSF Programmer’s Guide 9

Introduction1
terminal I/O and signals on the local side. NIOS is always automatically started by the
LSLIB as needed.

RES runs as root and runs tasks on behalf of all users in the LSF cluster. Proper
authentication is handled by RES before running a user task.

LSF utilities such as lsrun, lsgrun, ch, lsmake, and lstcsh use the remote
execution service.

Remote File Operation Service

The remote file operation service allows load sharing applications to operate on files
stored on remote machines. Such services extend the UNIX and Windows NT file
operation services so that files that are not shared among hosts can also be accessed by
distributed applications transparently.

LSLIB provides routines that are extensions to the UNIX and Windows NT file
operations such as open(2), close(2), read(2), write(2), fseek(3), stat(2), etc.

The LSF utility lsrcp is implemented with the remote file operation service functions.

Administration Service

These set of function calls allow application programmers to write tools for
administrating the LSF servers. The operations include reconfiguring the LSF clusters,
shutting down a particular LSF server on some host, restarting an LSF server on some
host, turning logging on or off, locking/unlocking a LIM on a host, etc.

The lsadmin and xlsadmin utilities use the administration services.

LSF Batch API Services

The LSF Batch API, LSBLIB, gives application programmers access to the job queueing
processing services provided by the LSF Batch servers. All LSF Batch user interface
utilities are built on top of LSBLIB. The services that are available through LSBLIB
include:
10

1

LSF Batch System Information Service

This set of function calls allow applications to get information about LSF Batch system
configuration and status. These include host, queue, and user configurations and
status.

The batch configuration information determines the resource sharing policies that
dictate the behavior of the LSF Batch scheduling.

The system status information reflects the current status of hosts, queues, and users of
the LSF Batch system.

Example utilities that use the LSF Batch configuration information services are
bhosts, bqueues, busers, bparams, and xlsbatch.

Job Manipulation Service

The job manipulation service allows LSF Batch application programmers to write
utilities that operate on user jobs. The operations include job submission, signaling,
status checking, checkpointing, migration, queue switching, and parameter
modification.

Log File Processing Service

LSBLIB provides convenient routines for handling log files used by LSF Batch. These
routines return the records logged in the lsb.events and lsb.acct files. The
records are stored in well-defined data structures.

The LSF Batch commands bhist and bacct are implemented with these routines.

LSF Batch Administration Service

This set of function calls are useful for writing LSF Batch administration tools. The LSF
Batch command badmin is implemented with these library calls.

Calendar Manipulation Service

These library calls are used only if you are using the Production Job Scheduler of LSF
(LSF JobScheduler). These function calls allow programmers to write utilities that
create, check, or change LSF Batch calendars. All the calendar-related user interface
LSF Programmer’s Guide 11

Introduction1
commands of the LSF JobScheduler make use of the calendar manipulation functions
of the LSF Batch API.

Getting Started with LSF Programming

LSF programming is like any other system programming. You are assumed to have
UNIX and/or Windows NT operating system and C programming knowledge to
understand the concepts involved.

lsf.conf File

This guide frequently refers to the file, lsf.conf, for the definition of some
parameters. lsf.conf is a generic reference file containing definitions of directories
and parameters. It is by default installed in /etc. If it is not installed in /etc, all users
of LSF must set the environment variable LSF_ENVDIR to point to the directory in
which lsf.conf is installed. Refer to ‘LSF Base Configuration Reference’ in the LSF
Administrator’s Guide for more details about the lsf.conf file.

LSF Header Files

All LSF header files are installed in the directory LSF_INCLUDEDIR/lsf, where
LSF_INCLUDEDIR is defined in the file lsf.conf. You should include
LSF_INCLUDEDIR in the include file search path, such as that specified by the
‘-Idir’ option of some compilers or pre-processors.

There is one header file for LSLIB, the LSF Base API, and one header file for LSBLIB,
the LSF Batch API.

lsf.h

An LSF application must include <lsf/lsf.h> before any of the LSF Base API
services are called. lsf.h contains definitions of constants, data structures, error
codes, LSLIB function prototypes, macros, etc., that are used by all LSF applications.
12

1

lsbatch.h

An LSF Batch application must include <lsf/lsbatch.h> before any of the LSF
Batch API services are called. lsbatch.h contains definitions of constants, data
structures, error codes, LSBLIB function prototypes, macros, etc., that are used by all
LSF Batch applications.

Note
There is no need to explicitly include <lsf/lsf.h> in an LSF Batch application
because lsbatch.h already includes <lsf/lsf.h>.

Linking Applications with LSF APIs

LSF API functions are contained in two libraries: liblsf.a (LSLIB) and libbat.a
(LSBLIB) for all UNIX platforms. For Windows NT, the file names of these libraries are:
liblsf.lib (LSLIB) and libbat.lib (LSBLIB), respectively. These files are
installed in LSF_LIBDIR, where LSF_LIBDIR is defined in the file lsf.conf.

Note
LSBLIB is not independent by itself. It must always be linked together with LSLIB.
This is because LSBLIB services are built on top of LSLIB services.

LSF uses BSD sockets for communications across the network. On systems that have
both System V and BSD programming interfaces, LSLIB and LSBLIB typically use the
BSD programming interface. On System V-based versions of UNIX, for example
Solaris, it is normally necessary to link applications using LSLIB or LSBLIB with the
BSD compatibility library. On Windows NT, a number of libraries are needed to be
linked together with LSF API. Details of these additional linkage specifications are
shown in the table below.

Table 1. Additional Linkage Specifications by Platform

Platform Additional Linkage Specifications

ULTRIX 4 (none)

Digital UNIX -lmach -lmld

HP-UX -lBSD

AIX -lbsd
LSF Programmer’s Guide 13

Introduction1
Note
On Windows NT, you need to add paths specified by LSF_LIBDIR and
LSF_INCLUDEDIR in lsf.conf to the environment variables LIB and INCLUDE,
respectively.

The $LSF_MISC/examples directory contains a makefile for making all the example
programs in that directory. You can modify this file for use with your own programs.

All LSLIB function call names start with ‘ls_’, whereas all LSBLIB function call names
start with ‘lsb_’.

Error Handling

LSF API uses error numbers to indicate an error. There are two global variables that are
accessible from the application. These variables are used in exactly the same way UNIX
system call error number variable errno is used. The error number should only be
tested when an LSLIB or LSBLIB call fails.

IRIX 5 -lsun -lc_s

IRIX 6 (none)

SunOS 4 (none)

Solaris 2 -lnsl -lelf -lsocket -lrpcsvc -lgen

NEC -lnsl -lelf -lsocket -lrpcsvc -lgen

Sony NEWSs -lc -lnsl -lelf -lsocket -lrpcsvc -lgen -lucb

ConvexOS (none)

Cray Unicos (none)

Linux (none)

Windows NT -MT -DWIN32 libcmt.lib oldnames.lib kernel32.lib
advapi32.lib user32.lib wsock32.lib mpr.lib
netapi32.lib

Table 1. Additional Linkage Specifications by Platform

Platform Additional Linkage Specifications
14

1

lserrno

An LSF program should test whether an LSLIB call is successful or not by checking the
return value of the call instead of lserrno.

When any LSLIB function call fails, it sets the global variable lserrno to indicate the
cause of the error. The programmer can either call ls_perror() to print the error
message explicitly to the stderr, or call ls_sysmsg() to get the error message string
corresponding to the current value of lserrno.

Possible values of lserrno are defined in lsf.h.

lsberrno

This variable is very similar to lserrno except that it is set by LSBLIB whenever an
LSBLIB call fails. Programmers can either call lsb_perror() to find out why an
LSBLIB call failed or use lsb_sysmsg() to get the error message corresponding to the
current value of lsberrno.

Possible values of lsberrno are defined in lsbatch.h.

Note
lserrno and lsberrno should be checked only if an LSLIB or LSBLIB call fails
respectively.

Example Applications

Example Application using LSLIB

#include <stdio.h>
#include <lsf/lsf.h>

void main()
{

char *clustername;

clustername = ls_getclustername();
if (clustername == NULL) {
LSF Programmer’s Guide 15

Introduction1
ls_perror(“ls_getclustername”);
exit(-1);

}

printf(“My cluster name is: <%s>\n”, clustername);
exit(0);

}

This simple example gets the name of the LSF cluster and prints it on the screen. The
LSLIB function call ls_getclustername() returns the name of the local cluster. If
this call fails, it returns a NULL pointer. ls_perror() prints the error message
corresponding to the most recently failed LSLIB function call.

The above program would produce output similar to the following:

%a.out
My cluster name is: <test_cluster>

Example Application using LSBLIB

#include <stdio.h>
#include<lsf/lsbatch.h>

main()
{

struct parameterInfo *parameters;

if (lsb_init(NULL) < 0) {
lsb_perror(“lsb_init”);
exit(-1);

}

parameters = lsb_parameterinfo(NULL, NULL, NULL);
if (parameters == NULL) {

lsb_perror(“lsb_parameterinfo”);
exit(-1);

}

/* Got parameters from mbatchd successfully. Now print out the fields */
printf(“Job acceptance interval: every %d dispatch turns\n”,

parameters->jobAcceptInterval);
/* Code that prints other parameters goes here */
16

1

/* ... */
exit(0);

}

This example gets the LSF Batch parameters and prints them on the screen. The
function lsb_init() must be called before any other LSBLIB function is called.

The data structure parameterInfo is defined in lsbatch.h.

Authentication

LSF programming is distributed programming. Since LSF services are provided
network-wide, it is important for LSF to deliver the service without compromising the
system security.

LSF supports several user authentication protocols. Support for these protocols are
described in the section ‘Remote Execution Control’ of the LSF Administrator’s Guide.
Your LSF administrator can configure the LSF cluster to use any of the protocols
supported.

Note that only those LSF API function calls that operate on user jobs, user data, or LSF
servers require authentication. Function calls that return information about the system
do not need to be authenticated. LSF API calls that must be authenticated are identified
in ‘List of LSF API Functions’ on page 99.

The most commonly used authentication protocol, the privileged port protocol,
requires that load sharing applications be installed as setuid programs. This means
that your application has to be owned by root with the suid bit set.

If you need to frequently change and relink your applications with LSF API, you can
consider using the ident protocol which does not require applications to be setuid
programs.
LSF Programmer’s Guide 17

2 Programming with LSLIB

This chapter provides simple examples that demonstrate the use of LSLIB functions in
an application. The function prototypes as well as data structures that are used by the
functions are described. Many of the examples resemble the implementation of the
existing LSF utilities.

Getting Configuration Information

One of the services that LSF provides to applications is cluster configuration
information service. This section describes how to get such services with a C program
using LSLIB.

Getting General Cluster Configuration Information

In the previous chapter, a very simple application was introduced that prints the name
of the LSF cluster. This section extends that example to print out more information
about the LSF cluster, namely, the current master host name and the defined resource
names in the cluster. It uses the following additional LSLIB function calls:

struct lsInfo *ls_info()
char *ls_getmastername()

The function ls_info() returns a pointer to the following data structure (as defined
in <lsf/lsf.h>):

struct lsinfo {
int nRes; Number of resources in the system
struct resItem *resTable; A resItem for each resource in the system
int nTypes; Number of host types
char hostTypes[MAXTYPES][MAXLSFNAMELEN]; Host types
int nModels; Number of host models
LSF Programmer’s Guide 19

Programming with LSLIB2
char hostModels[MAXMODELS][AXLSFNAMELEN]; Host models
float cpuFactor[MAXMODELS]; CPU factors of each host model
int numIndx; Total number of load indices in resItem
int numUsrIndix; Number of user-defined load indices

};

The function ls_getmastername() returns a string containing the name of the
current master host.

Both of these functions return NULL on failure and set lserrno to indicate the error.

The resItem structure describes the valid resources defined in the LSF cluster:

struct resItem {
name[MAXLSFNAMELEN]; The name of the resource
char des[MAXRESDESLEN]; The description of the resorce
enum valueType valueType; BOOLEAN, NUMERIC, STRING
enum orderType orderType; INCR, DECR, NA
int flags; RESF_BUILTIN | RESF_DYNAMIC | RESF_GLOBAL
int interval; The update interval for a load index, in seconds

};

The constants MAXTYPES, MAXMODELS, and MAXLSFNAMELEN are defined in <lsf/
lsf.h>. MAXLSFNAMELEN is the maximum length of a name in the LSF system.

A host type in LSF refers to a class of hosts that are considered to be compatible from
an application point of view. This is entirely configurable, although normally hosts
with the same architecture (binary compatible hosts) should be configured to have the
same host type.

A host model in LSF refers to a class of hosts with the same CPU performance. The CPU
factor of a host model should be configured to reflect the CPU speed of the model
relative to other host models in the LSF cluster.

Below is an example program that displays the general LSF cluster information using
the above LSLIB function calls.

#include <stdio.h>
#include <lsf/lsf.h>

main()
{

20

2

struct lsInfo *lsInfo;
char *cluster, *master;
int i;

cluster = ls_getclustername();
if (cluster == NULL) {

ls_perror(“ls_getclustername”);
exit(-1);

}
printf(“My cluster name is <%s>\n”, cluster);
master = ls_getmastername();
if (master == NULL) {

ls_perror(“ls_getmastername”);
exit(-1);

}
printf(“Master host is <%s>\n”, master);
lsInfo = ls_info();
if (lsInfo == NULL) {

ls_perror(“ls_info”);
exit(-1);

}
printf(“\n%-15.15s %s\n”, “RESOURCE_NAME”, “DESCRIPTION”);
for (i=0; i<lsInfo->nRes; i++)

printf(“-15.15s %s\n”,
lsInfo->resTable[i].name, lsInfo->resTable[i].des);

exit(0);
}

Note
The returned data structure of every LSLIB function is dynamically allocated inside
LSLIB. This storage is automatically freed by LSLIB and re-allocated next time the
same LSLIB function is called. An application should never attempt to free the storage
returned by LSLIB. If you need to keep this information across calls, make your own
copy of the data structure. This applies to all LSLIB function calls.

The above program will produce output similar to the following:

%a.out
My cluster name is <test_cluster>
Master host is <hostA>

RESOURCE_NAME DESCRIPTION
LSF Programmer’s Guide 21

Programming with LSLIB2
r15s 15-second CPU run queue length
r1m 1-minute CPU run queue length (alias: cpu)
r15m 15-minute CPU run queue length
ut 1-minute CPU utilization (0.0 to 1.0)
pg Paging rate (pages/second)
io Disk IO rate (Kbytes/second)
ls Number of login sessions (alias: login)
it Idle time (minutes) (alias: idle)
tmp Disk space in /tmp (Mbytes)
swp Available swap space (Mbytes) (alias: swap)
mem Available memory (Mbytes)
ncpus Number of CPUs
ndisks Number of local disks
maxmem Maximum memory (Mbytes)
maxswp Maximum swap space (Mbytes)
maxtmp Maximum /tmp space (Mbytes)
cpuf CPU factor
type Host type
model Host model
status Host status
rexpri Remote execution priority
server LSF server host
sparc SUN SPARC
hppa HPPA architecture
bsd BSD UNIX
sysv System V UNIX
hpux HP-UX UNIX
solaris SUN SOLARIS
cs Compute server
fddi Hosts connected to the FDDI
alpha DEC alpha

Getting Host Configuration Information

Host configuration information describes the static attributes of individual hosts in the
LSF cluster. Examples of such attributes are host type, host model, number of CPUs,
total physical memory, and the special resources associated with the host. These
attributes are either read from the LSF configuration file, or found out by LIM on
starting up.
22

2

The host configuration information can be obtained by calling the following LSLIB
function:

structhostInfo*ls_gethostinfo(resreq,numhosts,hostlist,listsize,options)

The following parameters are used by this function:

char *resreq; Resource requirements that a host of interest must satisfy
int *numhosts; If numhosts is not NULL, *numhosts contains the size of the returned array
char **hostlist; An array of candidate hosts
int listsize; Number of candidate hosts
int options; Options, currently only DFT_FROMTYPE

On success, this function returns an array containing a hostInfo structure for each
host of interest. On failure, it returns NULL and sets lserrno to indicate the error.

The hostInfo structure is defined in lsf.h as

struct hostInfo {
char hostName[MAXHOSTNAMELEN]; Host name
char *hostType; Host type
char *hostModel; Host model
float cpuFactor; CPU factor of the host’s CPUs
int maxCpus; Number of CPUs on the host
int maxMem; Size of physical memory on the host in MB
int maxSwap; Amount of swap space on the host in MB
int maxTmp Size of the /tmp file system on the host in MB
int nDisk; Number of disks on the host
int nRes; Size of the resources array
char **resources; An array of resources configured for the host
char *windows; Run windows of the host
int numIndx; Size of the busyThreshold array
float *busyThreshold; Array of load thresholds for determining if the host is

busy
char isServer; TRUE if the host is a server, FALSE otherwise
char licensed; TRUE if the host has an LSF license, FALSE otherwise
int rexPriority; Default priority for remote tasks execution on the host

};

Note
On Solaris, when referencing MAXHOSTNAMELEN, netdb.h must be included
before lsf.h or lsbatch.h.
LSF Programmer’s Guide 23

Programming with LSLIB2
The following example shows how to use the above LSLIB function in a program. This
example program displays the name, host type, total memory, number of CPUs and
special resources for each host that has more than 50MB of total memory.

#include <netdb.h> /* Required for Solaris to reference MAXHOSTNAMELEN */
#include <lsf/lsf.h>
#include <stdio.h>

main()
{

struct hostInfo *hostinfo;
char *resreq;
int numhosts = 0;
int options = 0;
int i, j;

resreq = “maxmem>50”;
hostinfo = ls_gethostinfo(resreq, &numhosts, NULL, 0, options);

if (hostinfo == NULL) {
ls_perror(“ls_gethostinfo”);
exit(-10);

}

printf(“There are %d hosts with more than 50MB total memory\n\n”,
numhosts);

printf(“%-11.11s %8.8s %6.6s %6.6s %9.9s\n”,
“HOST_NAME”, “type”, “maxMem”, “ncpus”, “RESOURCES”);

for (i = 0; i < numhosts; i++) {
printf(“%-11.11s %8.8s %8.0fM “, hostinfo[i].hostName,

hostinfo[i].hostType);

if (hostinfo[i].maxMem > 0)
printf(“%6d “, hostinfo[i].maxMem);

else /* maxMem info not available for this host*/
printf(“%6.6s “, “-”);

if (hostinfo[i].maxCpus > 0)
printf(“%6d “, hostinfo[i].maxCpus);

else /* ncpus is not known for this host*/
printf(“%6.6s“, “-”);

for (j = 0; j < hostinfo[i].nRes; j++)
24

2

printf(“ %s“, hostinfo[i].resources[j]);

printf(“\n”);
}
exit(0);

}

In the above example, resreq is the resource requirements used to select the hosts.
The variables you can use in a resource requirements must be the resource names
returned from ls_info(). You can also run the lsinfo command to obtain a list of
valid resource names in your LSF cluster.

Note that NULL and 0 were supplied for the third and fourth parameters of the
ls_gethostinfo() call. This causes all LSF hosts meeting resreq to be returned. If
a host list parameter is supplied with this call, the selection of hosts will be limited to
those belonging to the list.

If resreq is NULL, then the default resource requirements will be used. See ‘Handling
Default Resource Requirements’ on page 26 for details.

Note the test of maxMem and maxCpus. The values of these fields (along with maxSwap,
maxTmp and nDisks) are determined when LIM starts on a host. If the host is
unavailable, the master LIM supplies a negative value.

The above example program produces output similar to the following:
% a.out
There are 4 hosts with more than 50MB total memory

HOST_NAME type maxMem ncpus RESOURCES
hostA HPPA10 128M 1 hppa hpux cs
hostB ALPHA 58M 2 alpha cs
hostD ALPHA 72M 4 alpha fddi
hostC SUNSOL 54M 1 solaris fddi

LSLIB also provides functions simpler than ls_gethostinfo() to get frequently
used information. These functions include:

char *ls_gethosttype(hostname)
char *ls_gethostmodel(hostname)
float *ls_gethostfactor(hostname)

See ‘List of LSF API Functions’ on page 99 for more details about these functions.
LSF Programmer’s Guide 25

Programming with LSLIB2
Handling Default Resource Requirements

Some LSLIB functions require a resource requirement parameter. This parameter is
passed to LIM for host selection. It is important to understand how LSF handles default
resource requirements. See the LSF User’s Guide for further information about resource
requirements.

It is desirable that LSF automatically assume default values for some key requirements
if they are not specified by the user.

The default resource requirements depend on the specific application context. For
example, the lsload command would assume ‘type==any order[r15s:pg]’ as
the default resource requirements, while lsrun assumes ‘type==local
order[r15s:pg]’ as the default resource requirements. This is because the user
usually expects lsload to show the load on all hosts, while, with lsrun, a
conservative approach of running task on the same host type as the local host will in
most cases cause the task to be run on the correct host type.

LSLIB provides flexibility for the application programmer to decide what the default
behavior should be.

LSF default resource requirements contain two parts, a type requirement and an order
requirement. The former makes sure that the correct type of hosts are selected, while the
latter is used to order the selected hosts according to some reasonable criteria.

LSF appends a type resource requirement to the resource requirement string supplied by
an application in the following situations:

• resreq is NULL or an empty string.

• resreq does not contain a boolean resource, for example, ‘hppa’, and does not
contain a type or model resource, for example, ‘type==solaris’,
‘model==HP715’.

The default type requirement can be either ‘type==any’ or ‘type==$fromtype’
depending on whether or not the flag DFT_FROMTYPE is set in the options parameter
of the function call, where DFT_FROMTYPE is defined in lsf.h.
26

2

If DFT_FROMTYPE is set in the options parameter, the default type requirement is
‘type==$fromtype’. If DFT_FROMTYPE is not set, then the default type requirement is
‘type==any’.

The value of fromtype depends on the function call. If the function has a fromhost
parameter, then fromtype is the host type of the fromhost. Otherwise, fromtype is
‘local’.

LSF also appends an order requirement, order[r15s:pg], to the resource requirement
string if an order requirement is not already specified.

The table below lists some examples of how LSF appends the default resource
requirements.

Table 2. Examples of Default Resource Requirements

User’s Resource
Requirement

Resource Requirement After Appending the Default

DFT_FROMTYPE set DFT_FROMTYPE not set

NULL type==$fromtype
order[r15s:pg]

type==any
order[r15s:pg]

hpux hpux order[r15s:pg] hpux order[r15s:pg]

order[r1m] type==$fromtype
order[r1m]

type==any order[r1m]

model==hp735 model==hp735
order[r15s:pg]

model==hp735
order[r15s:pg]

sparc
order[ls]

sparc order[ls] sparc order[ls]

swp>25 &&
it>10

swp>25 && it>10 &&
type==$fromtype
order[r15s:pg]

swp>25 && it>10 &&
type==any
order[r15s:pg]

ncpus>1
order[ut]

ncpus>1 &&
type==$fromtype
order[ut]

ncpus>1 && type==any
order[ut]
LSF Programmer’s Guide 27

Programming with LSLIB2
Getting Dynamic Load Information

LSLIB provides several functions to obtain dynamic load information about hosts. The
dynamic load information is updated periodically by LIM. The definition of all
resources is stored in the struct lsInfo data structure returned by the
ls_info(3) API call (see ‘Getting General Cluster Configuration Information’ on
page 19 for details). We can classify LSF resources into two groups by resource
location, namely host-based resources and shared resources (see Chapter 2 of the LSF
Batch Administrator’s Guide for more information on host-based and shared resources).

Getting Dynamic Host-Based Resource Information

Dynamic host-based resources are frequently referred to as load indices, consisting of
11 built-in load indices and a number of external load indices. The built-in load indices
report load situation about the CPU, memory, disk subsystem, interactive activities,
etc. on each host. The external load indices are optionally defined by your LSF
administrator to collect additional host-based dynamic load information that is of
interest to your site. The LSLIB function that reports information about load indices is:

struct hostLoad *ls_load(resreq, numhosts, options, fromhost)

On success, this function returns an array containing a hostLoad structure for each
host of interest. On failure, it returns NULL and sets lserrno to indicate the error.

This function has the following parameters:

char *resreq; Resource requirements that each host of interest must satisfy
int *numhosts; *numhosts initially contains the number of hosts requested
int options; Option flags that affect the selection of hosts
char *fromhost; Used in conjunction with the DFT_FROMTYPE option

The value of *numhosts determines how many hosts should be returned by this call.
If *numhosts is 0, information is requested on all hosts satisfying resreq. If
numhosts is NULL, load information is requested on one host. If numhosts is not
NULL, then on a successful return *numhosts will contain the number of hostLoad
structures returned.
28

2

The options argument is constructed from the bitwise inclusive OR of zero or more
of the option flags defined in <lsf/lsf.h>. The most commonly used flags are:

EXACT Exactly *numhosts hosts are desired. If EXACT is set, either exactly
*numhosts hosts are returned, or the call returns an error. If EXACT is not set,
then up to *numhosts hosts are returned. If *numhosts is zero, then the
EXACT flag is ignored and as many hosts in the load sharing system as are
eligible (that is, those that satisfy the resource requirement) are returned.

OK_ONLY
Return only those hosts that are currently in the ok state. If OK_ONLY is set,
those hosts that are busy, locked, unlicensed or unavail are not
returned. If OK_ONLY is not set, then some or all of the hosts whose status are
not ok may also be returned, depending on the value of *numhosts and
whether the EXACT flag is set.

NORMALIZE
Normalize CPU load indices. If NORMALIZE is set, then the CPU run queue
length load indices r15s, r1m, and r15m of each host returned are
normalized. See the LSF User’s Guide for different types of run queue lengths.
The default is to return the raw run queue length.

EFFECTIVE
If EFFECTIVE is set, then the CPU run queue length load indices of each host
returned are the effective load. The default is to return the raw run queue length.
The options EFFECTIVE and NORMALIZE are mutually exclusive.

DFT_FROMTYPE
This flag determines the default resource requirements. See ‘Handling Default
Resource Requirements’ on page 26 for details.

The fromhost parameter is used when DFT_FROMTYPE is set in options. If
fromhost is NULL, the local host is assumed.
LSF Programmer’s Guide 29

Programming with LSLIB2
ls_load() returns an array of the following data structure as defined in <lsf/
lsf.h>:

struct hostLoad {
char hostName[MAXHOSTNAMELEN]; Name of the host
int status[2]; The operational and load status of the host
float *li; Values for all load indices of this host

}:

The returned hostLoad array is ordered according to the order requirement in the
resource requirements. For details about the ordering of hosts, see the LSF User’s Guide.

The following example takes no option, and periodically displays the host name, host
status and 1-minute effective CPU run queue length for each Sun SPARC host in the
LSF cluster.

#include <stdio.h>
#include <lsf/lsf.h>

main()
{

int i;
struct hostLoad *hosts;
char *resreq = “type==sparc”;
int numhosts = 0;
int options = EFFECTIVE;
char *fromhost = NULL;
char field[20] = “*”;

for (;;) { /* repeatedly display load */
hosts = ls_load(resreq, &numhosts, options, fromhost);

if (hosts == NULL) {
ls_perror(“ls_load”);
exit(-1);

}

printf(“%-15.15s %6.6s%6.6s\n”, “HOST_NAME”, “status”, “r1m”);

for (i = 0; i < numhosts; i++) {
printf(“%-15.15s “, hosts[i].hostName);
if (LS_ISUNAVAIL(hosts[i].status)) {

printf(“%6s\n”, “unavail”);
30

2

else if (LS_ISBUSY(hosts[i].status))
printf(“%6.6s”, “busy”);
else if (LS_ISLOCKED(hosts[i].status))
printf(“%6.6s”, “locked”);

else
printf(“%6.6s”, “ok”);

if (hosts[i].li[R1M] >= INFINIT_LOAD)
printf(“%6.6s\n”, “-”);

else {
sprintf(field + 1, “%5.1f”, hosts[i].li[R1M]);
if (LS_ISBUSYON(hosts[i].status, R1M))

printf(“%6.6s\n”, field);
else

printf(“%6.6s\n”, field + 1);
}

}
sleep(60); /* until next minute */

}
}

The output of the above program is similar to the following:

%a.out
HOST_NAME status r1m
hostB ok 0.0
hostC ok 1.2
hostA busy 0.6
hostD busy *4.3
hostF unavail

If the host status is busy because of r1m, then a ‘*’ is printed in front of the value of the
r1m load index.

In the above example, note that the returned data structure hostLoad never needs to
be freed by the program even if ls_load() is called repeatedly.

Each element of the li array is a floating point number between 0.0 and
INFINIT_LOAD (defined in lsf.h). The index value is set to INFINIT_LOAD by LSF
to indicate an invalid or unknown value for an index.
LSF Programmer’s Guide 31

Programming with LSLIB2
The li array can be indexed using different ways. The constants defined in lsf.h (see
the ls_load(3) man page) can be used to index any built-in load indices as shown in
the above example. If external load indices are to be used, the order in which load
indices are returned will be the same as that of the resources returned by ls_info().
The variables numUsrIndx and numIndx in structure lsInfo can be used to
determine which resources are load indices. See ‘Advanced Programming Topics’ on
page 83 for a discussion of more flexible ways to map load index names to values.

LSF defines a set of macros in lsf.h to test the status field. The most commonly
used macros include:

LS_ISUNAVAIL(status)
The LIM on the host is unavailable.

LS_ISBUSY(status)
Returns 1 if the host is busy.

LS_ISBUSYON(status, index)
Returns 1 if the host is busy on the given index.

LS_ISLOCKED(status)
Returns 1 if the host is locked.

LS_ISOK(status)
Returns 1 if none of the above is true.

Getting Dynamic Shared Resource Information

Unlike host-based resources which are inherent properties contributing to the making
of each host, shared resources are shared among a set of hosts. The availability of a
shared resource is characterized by having multiple instances, with each instance
being shared among a set of hosts.

The LSLIB function that can be used to access share resource information is:

LS_SHARED_RESOURCE_INFO_T
*ls_sharedresourceinfo(resources, numresources, hostname, options)

On success, this function returns an array containing a shared resource information
structure (LS_SHARED_RESOURCE_INFO_T) for each shared resource. On failure,
32

2

this function returns NULL and sets lserrno to indicate the error. This function has
the following parameters:

char **resources; NULL terminated array of resource names
int *numresources; Number of shared resources
int hostName; Host name
int options; Options (Currently set to 0)

resources is a list (NULL terminated array) of shared resource names whose resource
information is to be returned. Specify NULL to return resource information for all
shared resources defined in the cluster.

numresources is an integer specifying the number of resource information structures
(LS_SHARED_RESOURCE_INFO_T) to return. Specify 0 to return resource information
for all shared resources in the cluster. On success, numresources is assigned the
number of LS_SHARED_RESOURCE_INFO_T structures returned.

hostName is the integer name of a host. Specifying hostName indicates that only the
shared resource information for the named host is to be returned. Specify NULL to
return resource information for all shared resources defined in the cluster.

ls_sharedresourceinfo returns an array of the following data structure as
defined in <lsf/lsf.h> :

typedef struct lsSharedResourceInfo {
char *resourceName; Resource name
int nInstances; Number of instances
LS_SHARED_RESOURCE_INST_T *instances; pointer to the next instance

} LS_SHARED_RESOURCE_INFO_T;

For each shared resource, LS_SHARED_RESOURCE_INFO_T encapsulates an array of
instances in the instances field. Each instance is represented by the data type
LS_SHARED_RESOURCE_INST_T defined in <lsf/lsf.h> :

typedef struct lsSharedResourceInstance {
char *value; Value associated with the instance
int nHosts; Number of hosts sharing the instance
char **hostList; Hosts associated with the instance

} LS_SHARED_RESOURCE_INST_T;

The value field of the LS_SHARED_RESOURCE_INST_T structure contains the ASCII
representation of the actual value of the resource. The interpretation of the value
LSF Programmer’s Guide 33

Programming with LSLIB2
requires the knowledge of the resource (Boolean, Numeric or String), which can be
obtained from the resItem structure accessible through the lsLoad structure

returned by ls_load(). See ‘Getting General Cluster Configuration Information’ on
page 19 for details.

The following example shows how to use ls_sharedresourceinfo() to collect
dynamic shared resource information in an LSF cluster. This example displays
information from all the dynamic shared resources in the cluster. For each resource, the
resource name, instance number, value and locations are displayed.

#include <stdio.h>
#include <lsf/lsf.h>
static struct resItem * getResourceDef(char *);
static struct lsInfo * lsInfo;

void
main()
{

struct lsSharedResourceInfo *resLocInfo;
int numRes = 0;
int i, j, k;

lsInfo = ls_info();
if (lsInfo == NULL) {

ls_perror("ls_info");
exit(-10);

}

resLocInfo = ls_sharedresourceinfo (NULL, &numRes, NULL, 0);

if (resLocInfo == NULL) {
ls_perror("ls_sharedresourceinfo");
exit(-1);

}

printf("%-11.11s %8.8s %6.6s %14.14s\n",
"NAME", "INSTANCE", "VALUE", "LOCATIONS");

for (k = 0; k < numRes; k++) {
struct resItem *resDef;
resDef = getResourceDef(resLocInfo[k].resourceName);
if (! (resDef->flags & RESF_DYNAMIC))
34

2

continue;

printf("%-11.11s", resLocInfo[k].resourceName);
for (i = 0; i < resLocInfo[k].nInstances; i++) {

struct lsSharedResourceInstance *instance;

if (i == 0)
printf(" %8.1d", i+1);

else
printf(" %19.1d", i+1);

instance = &resLocInfo[k].instances[i];
printf(" %6.6s", instance->value);

for (j = 0; j < instance->nHosts; j++)
if (j == 0)

printf(" %14.14s\n", instance->hostList[j]);
else

printf(" %41.41s\n", instance->hostList[j]);

} /* for */
} /* for */

} /* main */

static struct resItem *
getResourceDef(char *resourceName)
{

int i;

for (i = 0; i < lsInfo->nRes; i++) {
if (strcmp(resourceName, lsInfo->resTable[i].name) == 0)

return &lsInfo->resTable[i];
}

/* Fail to find the matching resource */
fprintf(stderr, "Cannot find resource definition for <%s>\n",

resourceName);

exit (-1);

}
LSF Programmer’s Guide 35

Programming with LSLIB2
The output of the above program is similar to the following:

% a.out
NAME INSTANCE VALUE LOCATIONS
dynamic1 1 2 hostA

hostC
hostD

2 4 hostB
hostE

dynamic2 1 3 hostA
hostE

Note that the resource dynamic1 has two instances, one contains two resource units
shared by hostA, hostC and hostD and the other contains four resource units shared
by hostB and hostE. The dynamic2 resource has only one instance with three
resource units shared by hostA and hostE.

Making a Placement Decision

If you are writing an application that needs to run tasks on the best available hosts, you
need to make placement decision as to on which host each task should run.

Placement decision takes two factors into consideration. The first factor is the resource
requirements of the task. Every task has a certain set of resource requirements. These
may be static, such as a particular hardware architecture or operating system, or
dynamic, such as a certain amount of swap space for virtual memory.

LSLIB provides services for placement advice. All you have to do is to call the
appropriate LSLIB function with appropriate resource requirements.

A placement advice can be obtained by calling either ls_load() function or
ls_placereq() function. ls_load() returns a placement advice together with load
index values. ls_placereq() returns only the qualified host names. The result list of
hosts are ordered by preference, with the first being the best. ls_placereq() is
useful when a simple placement decision would suffice. ls_load() can be used if the
placement advice from LSF must be adjusted by your additional criteria. The LSF
utilities lsrun, lsmake, lslogin, and lstcsh all use ls_placereq() for
placement decision, whereas lsbatch uses ls_load() to get an ordered list of
36

2

qualified hosts, and then makes placement decisions by considering lsbatch-specific
policies.

In order to make optimal placement decisions, it is important that your resource
requirements best describe the resource needs of the application. For example, if your
task is memory intensive, then your resource requirement string should have ‘mem’ in
the order segment, ‘fddi order[mem:r1m]’.

The LSLIB function, ls_placereq(), takes the form of

char **ls_placereq(resreq, num, options, fromhost)

On success, this function returns an array of host names that best meet the resource
requirements. Hosts may be duplicated for hosts that have sufficient resources to
accept multiple tasks (for example, multiprocessors).

On failure, this function returns NULL and sets lserrno to indicate the error.

The parameters for ls_placereq() are very similar to those of the ls_load()
function described in the previous section.

LSLIB will append default resource requirement to resreq according to the rules
described in ‘Handling Default Resource Requirements’ on page 26.

Preference is given to fromhost over remote hosts that do not have significantly
lighter load or greater resources. This preference avoids unnecessary task transfer and
reduces overhead. If fromhost is NULL, then the local host is assumed.

The example program below takes a resource requirement string as an argument and
displays the host in the LSF cluster that best satisfies the resource requirement.

#include <stdio.h>
#include <lsf/lsf.h>

main(argc, argv)
int argc;
char *argv[];

{
char *resreq = argv[1];
char **best;
int num = 1;
LSF Programmer’s Guide 37

Programming with LSLIB2
int options = 0;
char *fromhost = NULL;

if (argc != 2) {
fprintf(stderr, “Usage: %s resreq\n”, argv[0]);
exit(-2);

}

best = ls_placereq(resreq, &num, options, fromhost);
if (best == NULL) {

ls_perror(“ls_placereq()”);
exit(-1);

}
printf(“The best host is <%s>\n”, best[0]);

exit(0);
}

The above program will produce output similar to the following:

% a.out “type==local order[r1m:ls]”
The best host is <hostD>

LSLIB also provides a variant of ls_placereq(). ls_placeofhosts() lets you
provide a list of candidate hosts. See the ls_policy(3) man page for details.

Getting Task Resource Requirements

Host selection relies on resource requirements. To avoid the need to specify resource
requirements each time you execute a task, LSF maintains a list of task names together
with their default resource requirements for each user. This information is kept in three
task list files: the system-wide defaults, the per-cluster defaults, and the per-user
defaults.

A user can put a task name together with its resource requirements into his/her remote
task list by running the lsrtasks command. The lsrtasks command can be used
to add, delete, modify, or display a task entry in the task list. For more information on
remote task list and an explanation of resource requirement strings, see the LSF User’s
Guide.
38

2

LSLIB provides a function to get the resource requirements associated with a task
name. With this function, LSF applications or utilities can automatically retrieve the
resource requirements of a given task if the user does not explicitly specify it. For
example, the LSF utility lsrun tries to find the resource requirements of the user-
typed command automatically if ‘-R’ option is not specified by the user on the
command line.

The LSLIB function call ls_resreq() obtains resource requirements of a given task.
The syntax of this function is:

char *ls_resreq(taskname)

If taskname does not appear in the remote task list, this function returns NULL.

Typically the resource requirements of a task are then used for host selection purpose.
The following program takes the input argument as a task name, get the associated
resource requirements from the remote task list, and then supply the resource
requirements to a ls_placereq() call to get the best host for running this task.

#include <stdio.h>
#include <lsf/lsf.h>

main(argc, argv)
int argc;
char *argv[];

{
char *taskname = argv[1];
char *resreq;
char **best;

if (argc != 2) {
fprintf(stderr, “Usage: %s taskname\n”, argv[0]);
exit(-1);

}

resreq = ls_resreq(taskname);

if (resreq)
printf(“Resource requirement for %s is \”%s\”.\n”, taskname, resreq);

else
printf(“Resource requirement for %s is NULL.\n”, taksname);
LSF Programmer’s Guide 39

Programming with LSLIB2
best = ls_placereq(resreq, NULL, 0, NULL);
if (best == NULL) {

ls_perror(“ls_placereq”);
exit(-1);

}
printf(“Best host for %s is <%s>\n”, taskname, best[0]);

exit(0);
}

The above program will produce output similar to the following:

%a.out myjob
Resource requirement for myjob is “swp>50 order[cpu:mem]”
Best host for myjob is <hostD>

Using Remote Execution Services

Remote execution of interactive tasks in LSF is supported through the Remote
Execution Server (RES). The RES listens on a well-known port for service requests.
Applications initiate remote execution by making an LSLIB call.

Remote Execution Mechanisms

The following steps are typically involved during a remote execution:

• The application makes a remote execution request through LSLIB.

• The LSLIB establishes a connection with the RES on the remote host and passes the
client’s identity and current execution environment over to the RES.

• The LSLIB starts a Network I/O Server (NIOS) locally if one has not been started
already and waits for a call back from the RES.

• If the LSLIB remote execution function is called with the pseudo-terminal option,
the RES creates a pseudo-terminal for the remote task and calls back to the client’s
NIOS to establish terminal I/O channels. If a pseudo-terminal is not required, the
RES creates a socket pair instead.
40

2

• The RES forks and executes the remote task with its stdin, stdout and stderr
associated with the pseudo-terminal or socket. The remote task runs, and the RES
forwards any output from the remote task back to the client’s NIOS.

• The client’s NIOS forwards the output from the remote task to the client’s stdout
or stderr. The NIOS also watches the user’s terminal and forwards any input to the
remote task through the RES. Signals received by the NIOS also are forwarded to
the remote task.

Figure 5. Remote Execution Mechanisms

When the remote task finishes, the RES collects its status and resource usage and sends
them back to the client through its NIOS

Remote Host

Remote
Task

RES
connection,

task execution

LSLIB

Application

Local Host

NIOS

tty & screen

stdin /stdout /stderr
signals & status

new
tasks

signals
status

pty master
pty slave

new
tasks

signals
status

pty master
pty slave

tty & screen

stdin
stdout
stderr

signals
LSF Programmer’s Guide 41

Programming with LSLIB2
Note that all of the above transactions are triggered by an LSLIB remote execution
function call and take place transparently to the programmer. Figure 5 shows the
relationships between these entities.

The same NIOS is shared by all remote tasks running on different hosts started by the
same instance of LSLIB. The LSLIB contacts multiple RESes and they all call back to the
same NIOS. The sharing of the NIOS is restricted to within the same application.

Remotely executed tasks behave as if they were executing locally. The local execution
environment passed to the RES is re-established on the remote host, and the task’s
status and resource usage are passed back to the client. Terminal I/O is transparent, so
even applications such as vi that do complicated terminal manipulation run
transparently on remote hosts. UNIX signals are supported across machines, so that
remote tasks get signals as if they were running locally. Job control also is done
transparently. This level of transparency is maintained between heterogeneous hosts.

Initializing an Application for Remote Execution

Before executing a task remotely, an application must call the following LSLIB
function:

int ls_initrex(numports, options)

On success, this function initializes the LSLIB for remote execution. If your application
is installed as a setuid program, this function returns the number of socket descriptors
bound to privileged ports. If your program is not installed as a setuid to root program,
this function returns numports on success.

On failure, this function returns -1 and sets the global variable lserrno to indicate the
error.

Note
This function must be called before any other remote execution function (see
ls_rex(3)) or any remote file operation function (see ls_rfs(3)) in LSLIB can
be called.

ls_initrex() has the following parameters:

int numports; The number of priviliged ports to create
int options; either KEEPUID or 0
42

2

If your program is installed as a setuid to root program, numports file descriptors,
starting from FIRST_RES_SOCK (defined in <lsf/lsf.h>), are bound to privileged
ports by ls_initrex(). These sockets are used only for remote connections to RES.
If numports is 0, then the system will use the default value LSF_DEFAULT_SOCKS
defined in lsf.h.

By default, ls_initrex() restores the effective user ID to real user ID if the program
is installed as a setuid to root program. If options is KEEPUID (defined in lsf.h),
ls_initrex() preserves the current effective user ID. This option is useful if the
application needs to be a setuid to root program for some other purpose as well and
does not want to go back to real user ID immediately after ls_initrex().

CAUTION!
If KEEPUID flag is set in options, you must make sure that your application
restores back to the real user ID at a proper time of the program execution.

ls_initrex() function selects the security option according to the following rule: if
the application program invoking it has an effective uid of root, then privileged ports
are created; otherwise, no such port is created and, at remote task start-up time, RES
will use the authentication protocol defined by LSF_AUTH in the lsf.conf file.

Running a Task Remotely

The example program below runs a command on one of the best available hosts. It
makes use of the ls_resreq() function described in ‘Getting Task Resource
Requirements’ on page 38, the ls_placereq() function described in ‘Making a
Placement Decision’ on page 36, the ls_initrex() function described in ‘Initializing
an Application for Remote Execution’ on page 42, and the following LSLIB function:

int ls_rexecv(host, argv, options)

This function executes a program on the specified host. It does not return if successful.
It returns -1 on failure.

This function is basically a remote execvp. If a connection with the RES on host has not
been established, ls_rexecv() sets one up. The remote execution environment is set
LSF Programmer’s Guide 43

Programming with LSLIB2
up to be exactly the same as the local one and is cached by the remote RES server. This
LSLIB function has the following parameters:

char *host; The execution host
char *argv[]; The command and its arguments
int options; See below

The options argument is constructed from the bitwise inclusive OR of zero or more
of the option flags defined in <lsf/lsf.h> with names starting with ‘REXF_” . The
most commonly used flag is:

REXF_USEPTY
Use a remote pseudo terminal as the stdin , stdout , and stderr of the
remote task. This option provides a higher degree of terminal I/O
transparency. This is only necessary for executing interactive screen
applications such as vi . The use of a pseudo-terminal incurs more overhead
and should be used only if necessary.

LSLIB also provides an ls_rexecve(3) function that allows you to specify the
environment to be set up on the remote host.

The program follows:

#include <stdio.h>
#include <lsf/lsf.h>

main(argc, argv)
int argc;
char *argv[];

{
char *command = argv[1];
char *resreq;
char **best;
int num = 1;

if (argc < 2) {
fprintf(stderr, “Usage: %s command [argument ...]\n”, argv[0]);
exit(-1);

}

if (ls_initrex(1, 0) < 0) {
ls_perror(“ls_initrex”);
44

2

exit(-1);
}

resreq = ls_resreq(command);

best = ls_placereq(resreq, &num, 0, NULL);
if (host == NULL) {

ls_perror(“ls_placereq()”);
exit(-1);

}

printf(“<<Execute %s on %s>>\n”, command, best[0]);
ls_rexecv(best[0], argv + 1, 0);
/* should never get here */
ls_perror(“ls_rexecv()”);
exit(-1);

}

The output of the above program would be something like:

%a.out myjob
<<Execute myjob on hostD>>
(output from myjob goes here)

Note
Any application that uses LSF’s remote execution service must be installed for proper
authentication. See ‘Authentication’ on page 17.

The LSF utility lsrun is implemented using the ls_rexecv() function. After remote
task is initiated, lsrun calls the ls_rexecv() function, which then executes NIOS to
handle all input/output to and from the remote task and exits with the same status
when remote task exits.

See ‘Advanced Programming Topics’ on page 83 for an alternative way to start remote
tasks.
LSF Programmer’s Guide 45

3 Programming with LSBLIB

This chapter shows how to use LSBLIB to access the services provided by LSF Batch
and LSF JobScheduler. Since LSF Batch and LSF JobScheduler are built on top of LSF
Base, LSBLIB relies on services provided by LSLIB. Thus if you use LSBLIB functions,
you must link your program with both LSLIB and LSBLIB.

LSF Batch and LSF JobScheduler services are mostly provided by mbatchd, except
services for processing event and job log files which do not involve any daemons.
LSBLIB is shared by both LSF Batch and LSF JobScheduler. The functions described
for LSF Batch in this chapter also apply to LSF JobScheduler, unless explicitly
indicated otherwise.

Initializing LSF Batch Applications

Before accessing any of the services provided by the LSF Batch and LSF JobScheduler,
an application must initialize LSBLIB. It does this by calling the following function:

int lsb_init(appname);

On success, it returns 0; otherwise, it returns -1 and sets lsberrno to indicate the
error.

The parameter appname is used only if you want to log detailed messages about the
transactions inside LSLIB for debugging purpose. The messages will be logged only if
LSB_CMD_LOG_MASK is defined as LOG_DEBUG1.

The messages will be logged in file LSF_LOGDIR/appname. If appname is NULL, the log
file is LSF_LOGDIR/bcmd.

Note
This function must be called before any other function in LSBLIB can be called.
LSF Programmer’s Guide 47

Programming with LSBLIB3
Getting Information about LSF Batch Queues

LSF Batch queues hold the jobs in the LSF Batch and set scheduling policies and limits
on resource usage.

LSBLIB provides a function to get information about the queues in the LSF Batch. This
includes queue name, parameters, statistics, status, resource limits, scheduling policies
and parameters, and users and hosts associated with the queue.

The example program in this section uses the following LSBLIB function to get the
queue information:

struct queueInfoEnt *lsb_queueinfo(queues,numQueues,hostname,username,options)

On success, this function returns an array containing a queueInfoEnt structure (see
below) for each queue of interest and sets *numQueues to the size of the array. On
failure, it returns NULL and sets lsberrno to indicate the error. It has the following
parameters:

char **queues; An array containing names of queues of interest
int *numQueues; The number of names in queues
char *hostname; Only queues using hostname are of interest
char *username; Only queues enabled for user are of interest
int options; Reserved for future use; supply 0

To get information on all queues, set *numQueues to 0; *numQueues will be updated
to the actual number of queues returned on a successful return.

If *numQueues is 1 and queue is NULL, information on the system default queue is
returned.

If hostname is not NULL, then all queues using host hostname as a batch server host
will be returned. If username is not NULL, then all queues allowing user username
to submit jobs to will be returned.

The queueInfoEnt structure is defined in lsbatch.h as

struct queueInfoEnt {
char *queue; Name of the queue
char *description; Description of the queue
48

3

int priority; Priority of the queue
short nice; Nice value at which jobs in the queue will be run
char *userList; Users allowed to submit jobs to the queue
char *hostList; Hosts to which jobs in the queue may be dispatched
int nIdx; Size of the loadSched and loadStop arrays
float *loadSched; Load thresholds that control scheduling of jobs from the queue
float *loadStop; Load thresholds that control suspension of jobs from the queue
int userJobLimit; Number of unfinished jobs a user can dispatch from the queue
int procJobLimit; Number of unfinished jobs the queue can dispatch to a processor
char *windows; Queue run window
int rLimits[LSF_RLIM_NLIMITS]; The per-process resource limits for jobs
char *hostSpec; Obsolete. Use defaultHostSpec instead
int qAttrib; Attributes of the queue
int qStatus; Status of the queue
int maxJobs; Job slot limit of the queue.
int numJobs; Total number of job slots required by all jobs
int numPEND; Number of job slots needed by pending jobs
int numRUN; Number of jobs slots used by running jobs
int numSSUSP; Number of job slots used by system suspended jobs
int numUSUSP; Number of jobs slots used by user suspended jobs
int mig; Queue migration threshold in minutes
int schedDelay; Schedule delay for new jobs
int acceptIntvl; Minimum interval between two jobs dispatched to the same host
char *windowsD; Queue dispatch window
char *nqsQueues; A blank-separated list of NQS queue specifiers
char *userShares; A blank-separated list of user shares
char *defaultHostSpec; Value of DEFAULT_HOST_SPEC for the queue in lsb.queues
int procLimit; Maximum number of job slots a job can take
char *admins; Queue level administrators
char *preCmd; Queue level pre-exec command
char *postCmd; Queue’s post-exec command
char *requeueEValues; Queue’s requeue exit status
int hostJobLimit; Per host job slot limit
char *resReq; Queue level resource requirement
int numRESERVE; Reserved job slots for pending jobs
int slotHoldTime; Time period for reserving job slots
char *sndJobsTo; Remote queues to forward jobs to
char *rcvJobsFrom; Remote queues which can forward to me
char *resumeCond; Conditions to resume jobs
char *stopCond; Conditions to suspend jobs
char *jobStarter; Queue level job starter
char *suspendActCmd; Action commands for SUSPEND
char *resumeActCmd; Action commands for RESUME
char *terminateActCmd; Action commands for TERMINATE
LSF Programmer’s Guide 49

Programming with LSBLIB3
int sigMap[LSB_SIG_NUM]; Configurable signal mapping
char *preemption; Preemption policy
int maxRschedTime; Time period for remote cluster to schedule job

};

The variable nIdx is the number of load threshold values for job scheduling. This is in
fact the total number of load indices as returned by LIM. The parameters sndJobsTo,
rcvJobsFrom, and maxRschedTime are only used with LSF MultiCluster.

For a complete description of the fields in the queueInfoEnt structure, see the
lsb_queueinfo(3) man page.

The program below takes a queue name as the first argument and displays information
about the named queue.

#include <stdio.h>
#include <lsf/lsbatch.h>

int
main (argc, argv)

int argc;
char *argv[];

{
struct queueInfoEnt *qInfo;
int numQueues = 1;
char *queue=argv[1];
int i;

if (argc != 2) {
printf(“Usage: %s queue_name\n”, argv[0]);
exit(-1);

}

if (lsb_init(argv[0]) < 0) {
lsb_perror(“lsb_init()”);
exit(-1);

}

qInfo = lsb_queueinfo(&queue, &numQueues, NULL, NULL, 0);
if (qInfo == NULL) {

lsb_perror(“lsb_queueinfo()”);
exit(-1);

}

50

3

printf(“Information about %s queue:\n”, queue);
printf(“Description: %s\n”, qInfo[0].description);
printf(“Priority: %d Nice: %d \n”,

qInfo[0].priority, qInfo[0].nice);
printf(“Maximum number of job slots:”);
if (qip->maxJobs < INFINIT_INT)

printf(“%5d\n“, qInfo[0].maxJobs);
else

printf(“%5s\n“, “unlimited”);

printf(“Job slot statistics: PEND(%d) RUN(%d) SUSP(%d) TOTAL(%d).\n”,
qInfo[0].numPEND, qInfo[0].numRUN,
qInfo[0].numSSUSP + qInfo[0].numUSUSP, qInfo[0].numJobs);

exit(0);
}

The header file lsbatch.h must be included with every application that uses LSBLIB
functions. Note that lsf.h does not have to be explicitly included in your program
because lsbatch.h already has lsf.h included. The function lsb_perror() is
used in much the same way ls_perror() is used to print error messages regarding
function call failure. You could check lsberrno if you want to take different actions
for different errors.

In the above program, INFINIT_INT is defined in lsf.h and is used to indicate that
there is no limit set for maxJobs. This applies to all LSF API function calls. LSF will
supply INFINIT_INT automatically whenever the value for the variable is either
invalid (not available) or infinity. This value should be checked for all variables that
are optional. For example, if you were to display the loadSched/loadStop values,
an INFINIT_INT indicates that the threshold is not configured and is ignored.

Note
Like the returned data structures by LSLIB functions, the returned data structures
from an LSBLIB function is dynamically allocated inside LSBLIB and is automatically
freed next time the same function is called. You should not attempt to free the space
allocated by LSBLIB. If you need to keep this information across calls, make your own
copy of the data structure.
LSF Programmer’s Guide 51

Programming with LSBLIB3
The above program will produce output similar to the following:

Information about normal queue:
Description: For normal low priority jobs
Priority: 25 Nice: 20
Maximum number of job slots : 40
Job slot statistics: PEND(5) RUN(12) SUSP(1) TOTAL(18)

Getting Information about LSF Batch Hosts

LSF Batch server hosts execute the jobs in the LSF Batch system.

LSBLIB provides a function to get information about the server hosts in the LSF Batch
system. This includes both configured static information as well as dynamic
information. Examples of host information include host name, status, job limits and
statistics, dispatch windows, and scheduling parameters.

The example program in this section uses the following LSBLIB function:

struct hostInfoEnt *lsb_hostinfo(hosts, numHosts)

This function gets information about LSF Batch server hosts. On success, it returns an
array of hostInfoEnt structures which hold the host information and sets
*numHosts to the size of the array. On failure, it returns NULL and sets lsberrno to
indicate the error. It has the following parameters:

char **hosts; An array of names of hosts of interest
int *numHosts; The number of names in hosts

To get information on all hosts, set *numHosts to 0; *numHosts will be set to the
actual number of hostInfoEnt structures when this call returns successfully.

If *numHosts is 1 and hosts is NULL, information on the local host is returned.

The hostInfoEnt structure is defined in lsbatch.h as

struct hostInfoEnt {
char *host; Name of the host
int hStatus; Status of host. (see below)
52

3

int busySched; Reason host will not schedule jobs
int busyStop; Reason host has suspended jobs
float cpuFactor; Host CPU factor, as returned by LIM
int nIdx; Size of the loadSched and loadStop arrays, as returned from LIM
float *load; Load LSF Batch used for scheduling batch jobs
float *loadSched; Load thresholds that control scheduling of jobs on host
float *loadStop; Load thresholds that control suspension of jobs on host
char *windows; Host dispatch window
int userJobLimit; Maximum number of jobs a user can run on host
int maxJobs; Maximum number of jobs that host can process concurrently
int numJobs; Number of jobs running or suspended on host
int numRUN; Number of jobs running on host
int numSSUSP; Number of jobs suspended by sbatchd on host
int numUSUSP; Number of jobs suspended by a user on host
int mig; Migration threshold for jobs on host
int attr; Host attributes

#define H_ATTR_CHKPNTABLE 0x1
#define H_ATTR_CHKPNT_COPY 0x2

float *realLoad; The load mbatchd obtained from LIM
int numRESERVE; Num of slots reserved for pending jobs
int chkSig; This variable is obsolete

};

Note the differences between host information returned by LSLIB function
ls_gethostinfo() and host information returned by the LSBLIB function
lsb_hostinfo(). The former returns general information about the hosts whereas
the latter returns LSF Batch specific information about hosts.

For a complete description of the fields in the hostInfoEnt structure, see the
lsb_hostinfo(3) man page.

The example program below takes a host name as an argument and displays various
information about the named host. It is a simplified version of the LSF Batch bhosts
command.

#include <stdio.h>
#include <lsf/lsbatch.h>

main (argc, argv)
int argc;
char *argv[];

{
struct hostInfoEnt *hInfo;
LSF Programmer’s Guide 53

Programming with LSBLIB3
int numHosts = 1;
char *hostname = argv[1];
int i;

if (argc != 2) {
printf(“Usage: %s hostname\n”, argv[0]);
exit(-1);

}
if (lsb_init(argv[0]) < 0) {

lsb_perror(“lsb_init”);
exit(-1);

}

hInfo = lsb_hostinfo(&hostname, &numHosts);

if (hInfo == NULL) {
lsb_perror(“lsb_hostinfo”);
exit (-1);

}

printf(“HOST_NAME STATUS JL/U NJOBS RUN SSUSP USUSP\n”);

printf (“%-18.18s”, hInfo->host);

if (hInfo->hStatus & HOST_STAT_UNLICENSED) {
printf(“ %-9s\n”, “unlicensed”);
continue; /* don’t print other info */

} else if (hInfo->hStatus & HOST_STAT_UNAVAIL)
printf(“ %-9s”, “unavail”);

else if (hInfo->hStatus & HOST_STAT_UNREACH)
printf(“ %-9s”, “unreach”);

else if (hInfo->hStatus & (HOST_STAT_BUSY | HOST_STAT_WIND
| HOST_STAT_DISABLED | HOST_STAT_LOCKED
| HOST_STAT_FULL | HOST_STAT_NO_LIM))

printf(“ %-9s”, “closed”);
else

printf(“ %-9s”, “ok”);

if (hInfo->userJobLimit < INFINIT_INT)
printf(“%4d”, hInfo->userJobLimit);

else
printf(“%4s”, “-”);

printf(“%7d %4d %4d %4d\n”,
54

3

hInfo->numJobs, hInfo->numRUN, hInfo->numSSUSP, hInfo->numUSUSP);

exit(0);

}

hStatus is the status of the host. It is the bitwise inclusive OR of some of the following
constants defined in lsbatch.h:

HOST_STAT_BUSY
The host load is greater than a scheduling threshold. In this status, no new
batch job will be scheduled to run on this host.

HOST_STAT_WIND
The host dispatch window is closed. In this status, no new batch job will be
accepted.

HOST_STAT_DISABLED
The host has been disabled by the LSF administrator and will not accept jobs.
In this status, no new batch job will be scheduled to run on this host.

HOST_STAT_LOCKED
The host is locked by an exclusive job. In this status, no new batch job will be
scheduled to run on this host.

HOST_STAT_FULL
The host has reached its job limit. In this status, no new batch job will be
scheduled to run on this host.

HOST_STAT_UNREACH
The sbatchd on this host is unreachable.

HOST_STAT_UNAVAIL
The LIM and sbatchd on this host are unreachable.

HOST_STAT_UNLICENSED
The host does not have an LSF license.

HOST_STAT_NO_LIM
The host is running an sbatchd but not a LIM.
LSF Programmer’s Guide 55

Programming with LSBLIB3
If none of the above holds, hStatus is set to HOST_STAT_OK to indicate that the host
is ready to accept and run jobs.

The constant INFINIT_INT defined in lsf.h is used to indicate that there is no limit
set for userJobLimit.

The example output from the above program follows:

% a.out hostB
HOST_NAME STATUS JL/U NJOBS RUN SSUSP USUSP
hostB ok - 2 1 1 0

Job Submission and Modification

Job submission and modification are most common operations in the LSF Batch
system. A user can submit jobs to the system and then modify them if the job has not
been started.

LSBLIB provides one function for job submission and one function for job
modification.

int lsb_submit(jobSubReq, jobSubReply)
int lsb_modify(jobSubReq, jobSubReply, jobId)

On success, these calls return the job ID, otherwise -1 is returned with lsberrno set
to indicate the error. These two functions are similar except that lsb_modify()
modifies the parameters of an already submitted job.

Both of these functions use the same data structure:

struct submit *jobSubReq; Job specifications
struct submitReply *jobSubReply; Results of job submission
int jobId; Id of the job to modify (lsb_modify() only)

The submit structure is defined in lsbatch.h as

struct submit {
int options; Indicates which optional fields are present
int options2; Indicates which additional fields are present
56

3

char *jobName; Job name (optional)
char *queue; Submit the job to this queue (optional)
int numAskedHosts; Size of askedHosts (optional)
char **askedHosts; An array of names of candidate hosts (optional)
char *resReq; Resource requirements of the job (optional)
int rlimits[LSF_RLIM_NLIMITS];

Limits on system resource use by all of the job’s processes
char *hostSpec; Host model used for scaling rlimits (optional)
int numProcessors; Initial number of processors needed by the job
char *dependCond; Job dependency condition (optional)
time_t beginTime; Dispatch the job on or after beginTime
time_t termTime; Job termination deadline
int sigValue; This variable is obsolete)
char *inFile; Path name of the job’s standard input file (optional)
char *outFile; Path name of the job’s standard output file (optional)
char *errFile; Path name of the job’s standard error output file (optional)
char *command; Command line of the job
time_t chkpntPeriod; Job is checkpointable with this period (optional)
char *chkpntDir; Directory for this job’s chk directory (optional)
int nxf; Sze of xf (optional)
struct xFile *xf; An array of file transfer specifications (optional)
char *preExecCmd; Job’s pre-execution command (optional)
char *mailUser; User E-mail address to which the job’s output are mailed (optional)
int delOptions; Bits to be removed from options (lsb_modify() only)
char *projectName; Name of the job’s project (optional)
 int maxNumProcessors; Requested maximum num of job slots for the job
 char *loginShell; Login shell to be used to re-initialize environment
 char *exceptList; Lists the exception handlers

};

For a complete description of the fields in the submit structure, see the
lsb_submit(3) man page.

The submitReply structure is defined in lsbatch.h as

struct submitReply {
char *queue; The queue name the job was submitted to
int badJobId; dependCond contains badJobId but there is no such job
char *badJobName; dependCond contains badJobName but there is no such job
int badReqIndx; Index of a host or resource limit that caused an error

};
LSF Programmer’s Guide 57

Programming with LSBLIB3
The last three variables in the structure submitReply are only used when the
lsb_submit() or lsb_modify() function calls fail.

For a complete description of the fields in the submitReply structure, see the
lsb_submit(3) man page.

To submit a new job, all you have to do is to fill out this data structure and then call
lsb_submit(). The delOptions variable is ignored by LSF Batch system for
lsb_submit() function call.

The example job submission program below takes the job command line as an
argument and submits the job to the LSF Batch system. For simplicity, it is assumed
that the job command does not have arguments.

#include <stdio.h>
#include <lsf/lsbatch.h>

main(argc, argv)
int argc;
char **argv;

{
struct submit req;
struct submitReply reply;
int jobId;
int i;

if (argc != 2) {
fprintf(stderr, “Usage: %s command\n”, argv[0]);
exit(-1);

}

if (lsb_init(argv[0]) < 0) {
lsb_perror(“lsb_init”);
exit(-1);

}

req.options = 0;
req.maxNumProcessors = 1;
req.options2 = 0;
req.resReq = NULL;

for (i = 0; i < LSF_RLIM_NLIMITS; i++)
req.rLimits[i] = DEFAULT_RLIMIT;
58

3

req.hostSpec = NULL;
req.numProcessors = 1;
req.maxNumProcessors = 1;
req.beginTime = 0;
req.termTime = 0;
req.command = argv[1];
req.nxf = 0;
req.delOptions = 0;

jobId = lsb_submit(&req, &reply);

if (jobId < 0) {
switch (lsberrno) {
case LSBE_QUEUE_USE:
case LSBE_QUEUE_CLOSED:

lsb_perror(reply.queue);
exit(-1);

default:
lsb_perror(NULL);
exit(-1);

}
}
exit(0);

}

The options field of the submit structure is the bitwise inclusive OR of some of the
SUB_* flags defined in lsbatch.h. These flags serve two purposes. Some flags
indicate which of the optional fields of the submit structure are present. Those that
are not present have default values. Other flags indicate submission options. For a
description of these flags, see lsb_submit(3).

Since options indicate which of the optional fields are meaningful, the programmer
does not need to initialize the fields that are not chosen by options. All parameters that
are not optional must be initialized properly.

If the resReq field of the submit structure is NULL, LSBLIB will try to obtain resource
requirements for command from the remote task list (see ‘Getting Task Resource
Requirements’ on page 38). If the task does not appear in the remote task list, then
NULL is passed to the LSF Batch system. mbatchd will then use the default resource
requirements with option DFT_FROMTYPE bit set when making a LSLIB call for host
LSF Programmer’s Guide 59

Programming with LSBLIB3
selection from LIM. See ‘Handling Default Resource Requirements’ on page 26 for
more information about default resource requirements.

The constant DEFAULT_RLIMIT defined in lsf.h indicates that there is no limit on a
resource.

The constants used to index the rlimits array of the submit structure is defined in
lsf.h, and the resource limits currently supported by LSF Batch are listed below.

The hostSpec field of the submit structure specifies the host model to use for scaling
rlimits[LSF_RLIMIT_CPU] and rlimits[LSF_RLIMIT_RUN] (See
lsb_queueinfo(3)). If hostSpec is NULL, the local host’s model is assumed.

If the beginTime field of the submit structure is 0, start the job as soon as possible.

If the termTime field of the submit structure is 0, allow the job to run until it reaches
a resource limit.

The above example checks the value of lsberrno when lsb_submit() fails.
Different actions can be taken depending on the type of the error. All possible error
numbers are defined in lsbatch.h. For example, error number LSBE_QUEUE_USE

Table 3. Resource Limits Supported by LSF Batch

Resource Limit Index in rlimits Array

CPU time limit LSF_RLIMIT_CPU

File size limit LSF_RLIMIT_FSIZE

Data size limit LSF_RLIMIT_DATA

Stack size limit LSF_RLIMIT_STACK

Core file size limit LSF_RLIMIT_CORE

Resident memory size limit LSF_RLIMIT_RSS

Number of open files limit LSF_RLIMIT_OPEN_MAX

Virtual memory limit LSF_RLIMIT_SWAP

Wall-clock time run limit LSF_RLIMIT_RUN

Maximum num of processes a job can fork LSF_RLIMIT_PROCESS
60

3

indicates that the user is not authorized to use the queue. The error number
LSBE_QUEUE_CLOSED indicates that the queue is closed.

Since a queue name was not specified for the job, the job will be submitted to the
default queue. The queue field of the submitReply structure contains the name of
the queue to which the job was submitted.

The above program will produce output similar to the following:

Job <5602> is submitted to default queue <default>.

The output from the job will be mailed to the user because it did not specify a file name
for the outFile parameter in the submit structure.

If you are familiar with the bsub command, it may help to know how the fields in the
submit structure realte to the bsub command options. This is provided in the
following table.

Table 4. submit fields and bsub options

bsub Option submit Field options

-J job_name_spec jobName SUB_JOB_NAME

-q queue_name queue SUB_QUEUE

-m host_name[+[pref_level]] askedHosts SUB_HOST

-n min_proc[,max_proc] numProcessors,
maxNumProcessors

-R res_req resReq SUB_RES_REQ

-c cpu_limit[/host_spec] rlimits[LSF_RLIMIT_CPU] /
hostSpec **

SUB_HOST_SPEC (if
host_spec is specified)

-W run_limit[/host_spec] rlimits[LSF_RLIMIT_RUN] /
hostSpec**

SUB_HOST_SPEC (if
host_spec is specified)

-F file_limit rlimits[LSF_RLIMIT_FSIZE]**

-M mem_limit rlimits[LSF_RLIMIT_RSS]**

-D data_limit rlimits[LSF_RLIMIT_DATA]**

-S stack_limit rlimits[LSF_RLIMIT_STACK**

-C core_limit rlimits[LSF_RLIMIT_CORE]**
LSF Programmer’s Guide 61

Programming with LSBLIB3
-k "chkpnt_dir
[chkpnt_period]"

chkpntDir, chkpntPeriod SUB_CHKPNT_DIR,

SUB_CHKPNT_DIR (if

chkpntPeriod is

specified)

-w depend_cond dependCond SUB_DEPEND_COND

-b begin_time beginTime

-t term_time TermTime

-i in_file inFile SUB_IN_FILE

-o out_file outFile SUB_OUT_FILE

-e err_file errFile SUB_ERR_FILE

-u mail_user mailUser SUB_MAIL_USER

-f "lfile op [rfile]" xf

-E "pre_exec_command
[argument ...]"

preExecCmd SUB_PRE_EXEC

-L login_shell loginShell SUB_LOGIN_SHELL

-P project_name projectName SUB_PROJECT_NAME

-G user_group userGroup SUB_USER_GROUP

-H SUB2_HOLD*

-x SUB_EXCLUSIVE

-r SUB_RERUNNABLE

-N SUB_NOTIFY_END

-B SUB_NOTIFY_BEGIN

-I SUB_INTERACTIVE

-Ip SUB_PTY

-Is SUB_PTY_SHELL

-K SUB2_BSUB_BLOCK*

Table 4. submit fields and bsub options

bsub Option submit Field options
62

3

* indicates a bitwise OR mask for options2.
** indicates -1 means undefined

Even if not all options are used, all optional string fields must be initialized to the
empty string. For a complete description of the fields in the submit structure, see the
lsb_submit(3) manual page.

To modify an already submitted job, you can fill out a new submit structure to override
existing parameters, and use delOptions to remove option bits that were previously
specified for the job. Essentially, modifying a submitted job is like re-submitting the
job. So the same program as above can be used to modify an existing job with minor
changes. One additional parameter that must be specified for job modification is the
job Id. The parameter delOptions can also be set if you want to clear some option bits
that were set previously.

Note
All applications that call lsb_submit() and lsb_modify() are subject to
authentication constraints described in ‘Authentication’ on page 17.

Getting Information about Batch Jobs

LSBLIB provides functions to get status information about batch jobs. Since the
number of jobs in the LSF Batch system could be on the order of many thousands,
getting all this information in one message could potentially use a lot of memory space.
LSBLIB allows the application to open a stream connection and then read the job
records one by one. This way the memory space needed is always the size of one job
record.

- X
"exception_cond([params])::
action"

exceptList SUB_EXCEPT

-T time_event timeEvent SUB_TIME_EVENT

Table 4. submit fields and bsub options

bsub Option submit Field options
LSF Programmer’s Guide 63

Programming with LSBLIB3
LSF Batch Job ID

An LSF Batch job ID stored in a 32-bit integer and it consists of two parts: base ID and
array index. The base ID is stored in the lower 20 bits whereas the array index in the
top 12 bits which are only used when the underlying job is an array job.

LSBLIB provides the following C macros (defined in lsbatch.h) for munipulating
job IDs:

LSB_JOBID(base_id, array_index) Yield a 32-bit LSF Batch job ID
LSB_ARRAY_IDX(job_id) Yield array index part of the job ID
LSB_ARRAY_JOBID(job_id) Yield the base ID part of the job ID

The function calls used to get job information are:

int lsb_openjobinfo(jobId, jobName, user, queue, host, options);
struct jobInfoEnt *lsb_readjobinfo(more);
void lsb_closejobinfo(void);

These functions are used to open a job information connection with mbatchd, read job
records, and then close the job information connection.

lsb_openjobinfo() function takes the following arguments:

int jobId; Select job with the given job Id
char *jobName; Select job(s) with the given job name
char *user; Select job(s) submitted by the named user or user group
char *queue; Select job(s) submitted to the named queue
char *host; Select job(s) that are dispatched to the named host
int options; Selection flags constructed from the bits defined in lsbatch.h

$UUD\�,QGH[EDVH�,'

�� �� �� �
64

3

The options parameter contains additional job selection flags defined in lsbatch.h.
These are:

ALL_JOB
Select jobs matching any status, including unfinished jobs and recently
finished jobs. LSF Batch remembers finished jobs within the CLEAN_PERIOD,
as defined in the lsb.params file.

CUR_JOB
Return jobs that have not finished yet.

DONE_JOB
Return jobs that have finished recently.

PEND_JOB
Return jobs that are in the pending status.

SUSP_JOB
Return jobs that are in the suspended status.

LAST_JOB
Return jobs that are submitted most recently.

JGRP_ARRAY_INFO
Return job array information.

If options is 0, then the default is CUR_JOB.

lsb_openjobinfo() returns the total number of matching job records in the
connection. It returns -1 on failure and sets lsberrno to indicate the error.

lsb_readjobinfo() takes one argument:

int *more; If not NULL, contains the remaining number of jobs unread

Either this parameter or the return value from the lsb_openjobinfo() can be used
to keep track of the number of job records that can be returned from the connection.
This parameter is updated each time lsb_readjobinfo() is called.
LSF Programmer’s Guide 65

Programming with LSBLIB3
The jobInfoEnt structure returned by lsb_readjobinfo() is defined in
lsbatch.h as:

struct jobInfoEnt {
int jobId; job ID
char *user; submission user
/* possible values for the status field */

#define JOB_STAT_PEND 0x01 job is pending
#define JOB_STAT_PSUSP 0x02 job is held
#define JOB_STAT_RUN 0x04 job is running
#define JOB_STAT_SSUSP 0x08 job is suspended by LSF Batch system
#define JOB_STAT_USUSP 0x10 job is suspended by user
#define JOB_STAT_EXIT 0x20 job exited
#define JOB_STAT_DONE 0x40 job is completed successfully

int status;
int *reasonTb; pending or suspending reasons
int numReasons; length of reasonTb vector
int reasons; reserved for future use
int subreasons; reserved for future use
int jobPid; process Id of the job
time_t submitTime; time when the job is submitted
time_t reserveTime; time when job slots are reserved
time_t startTime; time when job is actually started
time_t predictedStartTime; job’s predicted start time
time_t endTime; time when the job finishes
time_t lastEvent; last time event
time_t nextEvent; next time event
int duration; duration time (minutes)
float cpuTime; CPU time consumed by the job
int umask; file mode creation mask for the job
char *cwd; current working directory where job is submitted
char *subHomeDir; submitting user’s home directory
char *fromHost; host from which the job is submitted
char **exHosts; host(s) on which the job executes
int numExHosts; number of execution hosts
float cpuFactor; CPU factor of the first execution host
int nIdx; number of load indices in the loadSched and

loadStop vector
float *loadSched; stop scheduling new jobs if this threshold

is exceeded
float *loadStop; stop jobs if this threshold is exceeded
struct submit submit; job submission parameters
int exitStatus; exit status
int execUid; user ID under which the job is running
66

3

char *execHome; home directory of the user denoted by execUid
char *execCwd; current working directory where job is running
char *execUsername; user name corresponds to execUid
time_t jRusageUpdateTime; last time job’s resource usage is updated
struct jRusage runRusage; last updated job’s resource usage

/* Possible values for the jType field */
#define JGRP_NODE_JOB 1 this structure stores a normal batch job
#define JGRP_NODE_GROUP 2 this structure stores a job group
#define JGRP_NODE_ARRAY 3 this structure stores a job array

int jType;
char *parentGroup; for job group use
char *jName; job group name: if jType is JGRP_NODE_GROUP

job’s name: otherwise
/* index into the counter array, only used for job array */

#define JGRP_COUNT_NJOBS 0 total jobs in the array
#define JGRP_COUNT_PEND 1 number of pending jobs in the array
#define JGRP_COUNT_NPSUSP 2 number of held jobs in the array
#define JGRP_COUNT_NRUN 3 number of running jobs in the array
#define JGRP_COUNT_NSSUSP 4 number of jobs suspended by the system in the array
#define JGRP_COUNT_NUSUSP 5 number of jobs suspended by the user in the array
#define JGRP_COUNT_NEXIT 6 number of exited jobs in the array
#define JGRP_COUNT_NDONE 7 number of successfully completed jobs

int counter[NUM_JGRP_COUNTERS];
};

Under LSF Batch, the jobInfoEnt can store a job array as well as a non-array batch
job, depending on the value of jType field, which can be either JGRP_NODE_JOB or
JGRP_NODE_ARRAY.

lsb_closejobinfo() should be called after receiving all job records in the
connection.

Below is an example of a simplified bjobs command. This program displays all
pending jobs belonging to all users.

#include <stdio.h>
#include <lsf/lsbatch.h>

main()
{

int options = PEND_JOB;
char *user = ”all”; /* match jobs for all users */
LSF Programmer’s Guide 67

Programming with LSBLIB3
struct jobInfoEnt *job;
int more;

if (lsb_init(argv[0]) < 0) {
lsb_perror(“lsb_init”);
exit(-1);

}

if (lsb_openjobinfo(0, NULL, user, NULL, NULL, options) < 0) {
lsb_perror(“lsb_openjobinfo”);
exit(-1);

}

printf(“All pending jobs submitted by all users:\n”);
for (;;) {

job = lsb_readjobinfo(&more);
if (job == NULL) {

lsb_perror(“lsb_readjobinfo”);
exit(-1);

}
/* display the job */
printf(“%s:\nJob <%d> of user <%s>, submitted from host <%s>\n”,

ctime(&job->submitTime), job->jobId, job->user, job->fromHost);

if (! more)
break;

}

lsb_closejobinfo();
exit(0);

}

If you want to print out the reasons why the job is still pending, you can use the
function lsb_pendreason(). See lsb_pendreason(3) for details.
68

3

The above program will produce output similar to the following:

All pending jobs submitted by all users:
Mon Mar 1 10:34:04 EST 1996:
Job <123> of user <john>, submitted from host <orange>
Mon Mar 1 11:12:11 EST 1996:
Job <126> of user <john>, submitted from host <orange>
Mon Mar 1 14:11:34 EST 1996:
Job <163> of user <ken>, submitted from host <apple>
Mon Mar 1 15:00:56 EST 1996:
Job <199> of user <tim>, submitted from host <pear>

The following program displays the job arrays of all users in the LSF Batch system and
displays the breakdown of jobs as far as job status is concerned. The program
demonstrates the use of LSBLIB API calls for collecting summary information of a job
array.

#include <stdio.h>
#include <lsf/lsbatch.h>

int
main(int argc, char **argv)
{

struct jobInfoEnt *job;
int numJobs;
int more;

if (lsb_init(argv[0]) < 0) {
lsb_perror("lsb_init");
exit(-1);

}

numJobs = lsb_openjobinfo(0, NULL, "all", NULL, NULL, ALL_JOB|JGRP_ARRAY_INFO);
if (numJobs < 0) {

lsb_perror("lsb_openjobinfo");
exit(-1);

}

printf("JOBID ARRAY_NAME OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP\n");
more = 1;
for (;;) {
LSF Programmer’s Guide 69

Programming with LSBLIB3
if (!more)
break;

job = lsb_readjobinfo(&more);

printf("%-5d %-8.8s ", LSB_ARRAY_JOBID(job->jobId), job->submit.jobName);
printf("%8.8s ", job->user);

printf(" %5d %4d %4d %4d %4d %5d %5d %5d\n",
job->counter[JGRP_COUNT_NJOBS],
job->counter[JGRP_COUNT_PEND],
job->counter[JGRP_COUNT_NDONE],
job->counter[JGRP_COUNT_NRUN],
job->counter[JGRP_COUNT_NEXIT],
job->counter[JGRP_COUNT_NSSUSP],
job->counter[JGRP_COUNT_NUSUSP],
job->counter[JGRP_COUNT_NPSUSP]);

}
lsb_closejobinfo();

exit(0);
}

The above program produces output similar to the following:

JOBID ARRAY_NAME OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
4205 ja1[1-8] userA 8 0 0 0 0 0 0 8
4207 ja2[1-2] userB 2 0 0 0 0 0 0 2
5074 ja3[1-4] userA 4 0 3 1 0 0 0 0
5075 ja4[1-10] userC 17 0 13 0 0 4 0 0
5076 ja5[1-4] userD 4 0 1 0 3 0 0 0

Job Manipulation

After a job has been submitted, it can be manipulated by users in different ways. It can
be suspended, resumed, killed, or sent an arbitrary signal.

Note
All applications that manipulate jobs are subject to authentication provisions
described in ‘Authentication’ on page 17.
70

3

Sending a Signal To a Job

Users can send signals to submitted jobs. If the job has not been started, you can send
KILL, TERM, INT, and STOP signals. These will cause the job to be cancelled (KILL,
TERM, INT) or suspended (STOP). If the job is already started, then any signals can be
sent to the job.

The LSBLIB call to send a signal to a job is:

int lsb_signaljob(jobId, sigValue);

The jobId and sigValue parameters are self-explanatory.

The following example takes a job ID as the argument and send a SIGSTOP signal to
the job.

#include <stdio.h>
#include <lsf/lsbatch.h>

main(argc, argv)
int argc;
char *argv[];

{
if (argc != 2) {

printf(“Usage: %s jobId\n”, argv[0]);
exit(-1);

}

if (lsb_init(argv[0]) < 0) {
lsb_perror(“lsb_init”);
exit(-1);

}

if (lsb_signaljob(atoi(argv[1]), SIGSTOP) <0) {
lsb_perror(“lsb_signaljob”);
exit(-1);

}

printf(“Job %d is signaled\n”, argv[1]);
exit(0);

}

LSF Programmer’s Guide 71

Programming with LSBLIB3
Switching a Job To a Different Queue

A job can be switched to a different queue after submission. This can be done even after
the job has already started.

The LSBLIB function to switch a job from one queue to another is:

int lsb_switchjob(jobId, queue);

Below is an example program that switches a specified job to a new queue.

#include <stdio.h>
#include <lsf/lsbatch.h>

main(argc, argv)
int argc;
char *argv[];

{
if (argc != 3) {

printf(“Usage: %s jobId new_queue\n”, argv[0]);
exit(-1);

}

if (lsb_init(argv[0]) <0) {
lsb_perror(“lsb_init”);
exit(-1);

}

if (lsb_switchjob(argv[1], argv[2]) < 0) {
lsb_perror(“lsb_switchjob”);
exit(-1);

}

printf(“Job %d is switched to new queue <%s>\n”, argv[1], argv[2]);

exit(0);
}

72

3

Forcing a Job to Run

After a job is submitted to the LSF Batch system, it remains pending until LSF Batch
determines that it is ready to run (for details on the factors that govern when and where
a job starts to run, see "How LSF Batch Schedules Jobs" in the LSF Batch Administrator’s
Guide). However, a job can be forced to run on a specified list of hosts immediately
using the following LSBLIB function:

int lsb_runjob(runJobReq)

This function takes the runJobReq structure which is defined in lsbatch.h:

struct runJobReq {
int jobId; Job ID of the job to start
int numHosts; Number of hosts to run the job on
char **hostname; Host names where jobs run
int options; RUNJOB_REQ_NORMAL or RUNJOB_REQ_NOSTOP

}

A job can be started and run subject to no scheduling constraints, such as job slot limits.
If the job is started with the options field being 0 or RUNJOB_REQ_NORMAL, then the
job will still be subject to the underlying queue’s run windows and to the threshold of
the queue and of the job’s execution hosts.

To override this, use RUNJOB_REQ_NOSTOP and the job will not be stopped due to
the above mentioned load conditions. However, all LSBLIB’s job munipulation APIs
can still be applied to the job.

The following is an example program that runs a specified job on a host that has no
batch job running.

#include <stdio.h>
#include <lsf/lsbatch.h>

int
main(int argc, char **argv)
{

struct hostInfoEnt *hInfo;
int numHosts;

if (argc != 2) {
printf("Usage: %s jobId\n", argv[0]);
LSF Programmer’s Guide 73

Programming with LSBLIB3
exit(-1);
}

if (lsb_init(argv[0]) < 0) {
lsb_perror("lsb_init");
exit(-1);

}

hInfo = lsb_hostinfo(NULL, &numHosts);
if (hInfo == NULL) {

lsb_perror("lsb_hostinfo");
exit(-1);

}

for (i = 0; i < numHosts; i++) {
if (hInfo[i].hStatus & (HOST_STAT_BUSY | HOST_STAT_WIND

| HOST_STAT_DISABLED | HOST_STAT_LOCKED
| HOST_STAT_FULL | HOST_STAT_NOLIM
| HOST_STAT_UNLICENSED | HOST_STAT_UNAVAIL
| HOST_STAT_UNREACH))

continue;

/* found a vacant host */
if (hInfo[i].numJobs == 0)

break;
}

if (i == numHosts) {
fprintf(stderr, "Cannot find vacate host to run job < %d >\n",

jobId);
exit(-1);

}

/* The job can be stopped due to load conditions */
runJobReq.options = 0;
runJobReq.numHosts = 1;
runJobReq.hosts = &hInfo[i].host

if (lsb_runjob(&runJobReq) < 0) {
lsb_perror("lsb_runjob");

exit(-1);
}

74

3

exit (0);
}

Processing LSF Batch Log Files

LSF Batch saves a lot of valuable information about the system and jobs. Such
information is logged by mbatchd in files lsb.events and lsb.acct under the
directory $LSB_SHAREDIR/your_cluster/logdir, where LSB_SHAREDIR is
defined in the lsf.conf file and your_cluster is the name of your LSF cluster.

mbatchd logs such information for several purposes. Firstly, some of the events serve
as the backup of mbatchd’s memory so that in case mbatchd crashes, all the critical
information can be picked up by the newly started mbatchd from the event file to
restore the current state of LSF Batch. Secondly, the events can be used to produce
historical information about the LSF Batch system and user jobs. Lastly, such
information can be used to produce accounting or statistic reports.

CAUTION!
The lsb.events file contains critical user job information. It should never
be modified by your program. Writing into this file may cause the loss of
user jobs.

LSBLIB provides a function to read information from these files into a well-defined
data structure:

struct eventRec *lsb_geteventrec(log_fp, lineNum)

The parameters are:

FILE *log_fp; File handle for either an event log file or job log file
nt *lineNum; Line number of the next event record

The parameter log_fp is as returned by a successful fopen() call. The content in
lineNum is modified to indicate the line number of the next event record in the log file
on a successful return. This value can then be used to report the line number when an
error occurs while reading the log file. This value should be initiated to 0 before
lsb_geteventrec() is called for the first time.
LSF Programmer’s Guide 75

Programming with LSBLIB3
This call returns the following data structure:

struct eventRec {
char version[MAX_VERSION_LEN]; Version number of the mbatchd
int type; Type of the event
int eventTime; Event time stamp
union eventLog eventLog; Event data

};

The event type is used to determine the structure of the data in eventLog. LSBLIB
remembers the storage allocated for the previously returned data structure and
automatically frees it before returning the next event record.

lsb_geteventrec() returns NULL and sets lsberrno to LSBE_EOF when there are
no more records in the event file.

Events are logged by mbatchd for many different purposes. There are job-related
events and system-related events. Applications can choose to process certain events
and ignore other events. For example, the bhist command processes job-related
events only. The currently available event types are listed below.

Table 5. Event Types

Event Type Description

EVENT_JOB_NEW New job event

EVENT_JOB_START mbatchd is trying to start a job

EVENT_JOB_STATUS Job status change event

EVENT_JOB_SWITCH Job switched to a new queue

EVENT_JOB_MOVE Job moved within a queue

EVENT_QUEUE_CTRL Queue status changed by LSF admin

EVENT_HOST_CTRL Host status changed by LSF admin

EVENT_MBD_START New mbatchd start event

EVENT_MBD_DIE mbatchd resign event

EVENT_MBD_UNFULFILL mbatchd has an action to be fulfilled

EVENT_JOB_FINISH Job has finished (logged in lsb.acct only)
76

3

Note that the event type EVENT_JOB_FINISH is used by the lsb.acct file only and
all other event types are used by the lsb.events file only. For detailed formats of
these log files, see lsb.events(5) and lsb.acct(5).

1. Available only if the LSF JobScheduler component is enabled.

EVENT_LOAD_INDEX Complete list of load index names

EVENT_MIG Job has migrated

EVENT_PRE_EXEC_START The pre-execution command started

EVENT_JOB_ROUTE The job has been routed to NQS

EVENT_JOB_MODIFY The job has been modified

EVENT_JOB_SIGNAL Job signal to be delivered

EVENT_CAL_NEW New calendar event 1

EVENT_CAL_MODIFY Calendar modified 1

EVENT_CAL_DELETE Calendar deleted 1

EVENT_JOB_FORCE Forcing a job to start on specified hosts

EVENT_JOB_FORWARD Job forwarded to another cluster

EVENT_JOB_ACCEPT Job from a remote cluster dispatched

EVENT_STATUS_ACK Job status successfully sent to submission cluster

EVENT_JOB_EXECUTE Job started successfully

EVENT_JOB_REQUEUE Job is requeued

EVENT_JOB_SIGACT An signal action on a job has been initiated or
finished

EVENT_JOB_START_ACCEPT Job accepted by sbatchd

Table 5. Event Types

Event Type Description
LSF Programmer’s Guide 77

Programming with LSBLIB3
Each event type corresponds to a different data structure in the union:

union eventLog {
struct jobNewLog jobNewLog; EVENT_JOB_NEW
struct jobStartLog jobStartLog; EVENT_JOB_START
struct jobStatusLog jobStatusLog; EVENT_JOB_STATUS
struct jobSwitchLog jobSwitchLog; EVENT_JOB_SWITCH
struct jobMoveLog jobMoveLog; EVENT_JOB_MOVE
struct queueCtrlLog queueCtrlLog; EVENT_QUEUE_CTRL
struct hostCtrlLog hostCtrlLog; EVENT_HOST_CTRL
struct mbdStartLog mbdStartLog; EVENT_MBD_START
struct mbdDieLog mbdDieLog; EVENT_MBD_DIE
struct unfulfillLog unfulfillLog; EVENT_MBD_UNFULFILL
struct jobFinishLog jobFinishLog; EVENT_JOB_FINISH
struct loadIndexLog loadIndexLog; EVENT_LOAD_INDEX
struct migLog migLog; EVENT_MIG
struct calendarLog calendarLog; Shared by all calendar events
struct jobForce jobForceRequestLog EVENT_JOB_FORCE
struct jobForwardLog jobForwardLog; EVENT_JOB_FORWARD
struct jobAcceptLog jobAcceptLog; EVENT_JOB_ACCEPT
struct statusAckLog statusAckLog; EVENT_STATUS_ACK
struct signalLog signalLog; EVENT_JOB_SIGNAL
struct jobExecuteLog jobExecuteLog; EVENT_JOB_EXECUTE
struct jobRequeueLog jobRequeueLog; EVENT_JOB_REQUEUE
struct sigactLog sigactLog; EVENT_JOB_SIGACT
struct jobStartAcceptLog jobStartAcceptLog EVENT_JOB_START_ACCEPT

};

The detailed data structures in the above union are defined in lsbatch.h and
described in lsb_geteventrec(3).

Below is an example program that takes an argument as job name and displays a
chronological history about all jobs matching the job name. This program assumes that
the lsb.events file is in /local/lsf/work/cluster1/logdir.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <lsf/lsbatch.h>

main(argc, argv)
int argc;
78

3

char *argv[];
{

char *eventFile = “/local/lsf/work/cluster1/logdir/lsb.events”;
FILE *fp;
struct eventRec *recrod;
int lineNum = 0;
char *jobName = argv[1];
int i;

if (argc != 2) {
printf(“Usage: %s jobname\n”, argv[0]);
exit(-1);

}

if (lsb_init(argv[0]) < 0) {
lsb_perror(“lsb_init”);
exit(-1);

}

fp = fopen(eventFile, “r”);
if (fp == NULL) {

perror(eventFile);
exit(-1);

}

for (;;) {

record = lsb_geteventrec(fp, &lineNum);
if (record == NULL) {

if (lsberrno == LSBE_EOF)
exit(0);

lsb_perror(“lsb_geteventrec”);
exit(-1);

}

if (strcmp(record->eventLog.jobNewLog.jobName, jobName) != 0)
continue;

switch (record->type) {
struct jobNewLog *newJob;
struct jobStartLog *startJob;
struct jobStatusLog *statusLog;

case EVENT_JOB_NEW:
LSF Programmer’s Guide 79

Programming with LSBLIB3
newJob = &(record->eventLog.jobNewLog);
printf(“%s: job <%d> submitted by <%s> from <%s> to <%s> queue\n”,

ctime(&record->eventTime), newJob->jobId, newJob->userName,
newJob->fromHost, newJob->queue);

continue;
case EVENT_JOB_START:

startJob = &(record->eventLog.jobStartLog);
printf(“%s: job <%d> started on ”,

ctime(&record->eventTime), newJob->jobId);
for (i=0; i<startJob->numExHosts; i++)

printf(“<%s> “, startJob->execHosts[i]);
printf(“\n”);
continue;

case EVENT_JOB_STATUS:
statusJob = &(record->eventLog.jobStatusLog);
printf(“%s: Job <%d> status changed to: ”,

ctime(&record->eventTime), statusJob->jobId);
switch(statusJob->jStatus) {
case JOB_STAT_PEND:

printf(“pending\n”);
continue;

case JOB_STAT_RUN:
printf(“running\n”);
continue;

case JOB_STAT_SSUSP:
case JOB_STAT_USUSP:
case JOB_STAT_PSUSP:

printf(“suspended\n”);
continue;

case JOB_STAT_UNKWN:
printf(“unknown (sbatchd unreachable)\n”);
continue;

case JOB_STAT_EXIT:
printf(“exited\n”);
continue;

case JOB_STAT_DONE:
printf(“done\n”);
continue;

default:
printf(“\nError: unknown job status %d\n”, statusJob->jStatus);
continue;

}
default: /* Only display a few selected event types*/
80

3

continue;
}

}

exit(0);
}

Note that in the above program, events that are of no interest are skipped. The job
status codes are defined in lsbatch.h. The lsb.acct file stores job accounting
information and can be processed similarly. Since currently there is only one event
type (EVENT_JOB_FINISH) in lsb.acct file, the processing is simpler than the
above example.
LSF Programmer’s Guide 81

4 Advanced Programming
Topics

LSF API provides flexibility for programmers to write complex load sharing
applications. Previous chapters covered the basic programming techniques using LSF
APIs. This chapter will look into a few more advanced topics in LSF application
programming.

Both LSLIB and LSBLIB are used in the examples of this chapter.

Getting Load Information on Selected Load Indices

‘Getting Dynamic Load Information’ on page 28 showed an example that gets load
information from the LIM. Depending on the size of your LSF cluster and the
frequency at which the ls_load() function is called, returning the load information
about all hosts can produce unnecessary overhead to hosts and network.

LSLIB provides a function call that will allow an application to specify a selective
number of load indices and get only those load indices that are of interest to the
application.

Getting a List of All Load Index Names

Since LSF allows a site to install an ELIM (External LIM) to collect additional load
indices, the names and the total number of load indices are often dynamic and have to
be found out at run time unless the application is only using the built-in load indices.
LSF Programmer’s Guide 83

Advanced Programming Topics4
Below is an example routine that returns a list of all available load index names and the
total number of load indices.

#include <lsf/lsf.h>

char **getIndexList(listsize)
int *listsize;

{
struct lsInfo *lsInfo;
static char *nameList[MAXLOADINDEX];
static int first = 1;

if (first) { /* only need to do so when called for the first time */
lsInfo = ls_info();
if (lsInfo == NULL)

return (NULL);
first = 0;

}

if (listSize != NULL)
*listSize = lsInfo->numIndx;

for (i=0; i<lsInfo->numIndx; i++)
nameList[i] = lsInfo->resTable[i].name;

return (nameList);
}

The above routine returns a list of load index names currently installed in the LSF
cluster. The content of listSize will be modified to the total number of load indices.
The program would return NULL if the ls_info() function fails. The data structure
returned by ls_info() contains all the load index names before any other resource
names. The load index names start with the 11 built-in load indices followed by site
external load indices (through ELIM).

Displaying Selected Load Indices

By providing a list of load index names to an LSLIB function, you can get the load
information about the specified load indices.
84

4

The following example shows how you can display the values of the external load
indices. This program uses the following LSLIB function:

struct hostLoad *ls_loadinfo(resreq, numhosts, options, fromhost,
hostlist, listsize, namelist)

The parameters for this routine are:

char *resreq; Resource requirement
int *numhosts; Return parameter, number of hosts returned
int options; Host and load selection options
char *fromhost; Used only if DFT_FROMTYPE is set in options
char **hostlist; A list of candidate hosts for selection
int listsize; Number of hosts in hostlist
char ***namelist; Input/output parameter -- load index name list

This call is similar to ls_load() except that it allows an application to supply both a
list of load indices and a list of candidate hosts. If both these parameters are NULL, then
it is exactly the same as ls_load() function.

The parameter namelist allows an application to specify a list of load indices of
interest. the function then returns only the specified load indices. On return this
parameter is modified to point to another name list that contains the same set of load
index names, but in a different order to reflect the mapping of index names and the
actual load values returned in the hostLoad array:

#include <stdio.h>
#include <lsf.lsf.h>

main()
{

struct hostLoad *load;
char **loadNames;
int numIndx;
int numUsrIndx;
int nHosts;

loadNames = getIndexList(&numIndx);
if (loadNames == NULL) {

ls_perror(“Unable to get load index names\n”);
exit(-1);

}

LSF Programmer’s Guide 85

Advanced Programming Topics4
numUsrIndx = numIndx - 11; /* this is the total num of site defined indices*/
if (numUsrIndx == 0) {

printf(“No external load indices defined\n”);
exit(-1);

}

loadNames += 11; /* skip the 11 built-in load index names */

load = ls_loadinfo(NULL, &nHosts, 0, NULL, NULL, 0, &loadNames);
if (load == NULL) {

ls_perror(“ls_loadinfo”);
exit(-1);

}

printf(“Report on external load indices\n”);

for (i=0; i<nHosts; i++) {
printf(“Host %s:\n”, load[i].hostName);
for (j=0; j<numUsrindx; j++)

printf(“ index name: %s, value %5.0f\n”,
loadNames[j], load[i].li[j]);

}
}

The above program uses the getIndexList() function described in the previous
example program to get a list of all available load index names. Sample output from
the above program follows:

Report on external load indices
Host hostA:

index name: usr_tmp, value 87
index name: num_licenses, value 1

Host hostD:
index name: usr_tmp, value 18
index name: num_licenses, value 2

Writing a Parallel Application

LSF provides job placement and remote execution support for parallel applications.
LIM’s host selection or placement service can return an array of good hosts for an
86

4

application. The application can then use remote execution service provided by RES to
run tasks on these hosts concurrently.

In this section are examples of writing a parallel application using LSLIB.

ls_rtask() Function

‘Running a Task Remotely’ on page 43 discussed the use of ls_rexecv() function for
remote execution. There is another LSLIB call for remote execution: ls_rtask().
These two functions differ in how the client side behaves.

The ls_rexecv() is useful when local side does not need to do anything but wait for
the remote task to finish. After initiating the remote task, ls_rexecv() replaces the
current program with the Network I/O Server (NIOS) by calling the execv() system
call. The NIOS then handles the rest of the work on the local side: delivering input/
output between local terminal and remote task and exits with the same status as the
remote task. ls_rexecv() may be considered as the remote execution version of the
UNIX execv() system call.

ls_rtask() provides more flexibility if the client side has to do other things after the
remote task is initiated. For example, the application may want to start more than one
task on several hosts. Unlike ls_rexecv(), ls_rtask() returns immediately after
the remote task is started. The syntax of ls_rtask() is:

int ls_rtask(host, argv, options)

The parameters are:

char *host; Name of the remote host to start task on
char **argv; Program name and arguments
int options; Remote execution options

The options parameter is similar to that of the ls_rexecv() function. This function
returns the task ID of the remote task which can then be used by the application to
differentiate possibly multiple outstanding remote tasks. When a remote task finishes,
the status of the remote task is sent back to the NIOS running on the local host, which
then notifies the application by issuing a SIGUSR1 signal. The application can then call
ls_rwait() to collect the status of the remote task. The ls_rwait() behaves in
LSF Programmer’s Guide 87

Advanced Programming Topics4
much the same way as the wait(2) system call. ls_rtask() may be considered as
a combination of remote fork() and execv().

Note
Applications calling ls_rtask() must set up signal handler for the SIGUSR1
signal, or the application could be killed by SIGUSR1.

You need to be careful if your application handles SIGTSTP, SIGTTIN, or SIGTTOU
signal. If handlers for these signals are SIG_DFL, the ls_rtask() function
automatically installs a handler for them to properly coordinate with the NIOS when
these signals are received. If you intend to handle these signals by yourself instead of
using the default set by LSLIB, you need to use the low level LSLIB function
ls_stoprex() before the end of your signal handler.

Running Tasks on Many Machines

Below is an example program that uses ls_rtask() to run rm -f /tmp/core on
user specified hosts.

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <lsf/lsf.h>

main (argc, argv)
int argc;
char *argv[];

{
char *command[4];
int numHosts;
int i;
int tid;

if (argc <= 1) {
printf(“Usage: %s host1 [host2 ...]\n”);
exit(-1);

}

numHosts = argc - 1;
command[0] = “rm”;
command[1] = “-f”;
command[2] = “/tmp/core”;
88

4

command[3] = NULL;

if (ls_initrex(numHosts, 0) < 0) {
ls_perror(“ls_initrex”);
exit(-1);

}

signal(SIGUSR1, SIG_IGN);

/* Run command on the specified hosts */
for (i=1; i<=numHosts; i++) {

if ((tid = ls_rtask(argv[i], command, 0)) < 0) {
fprintf(stderr, “lsrtask failed for host %s: %s\n”,

argv[i], ls_sysmsg());
exit(-1);

}
printf(“Task %d started on %s\n”, tid, argv[i]);

}

while (numHosts) {
LS_WAIT_T status;

tid = ls_rwait(&status, 0, NULL);
if (tid < 0) {

ls_perror(“ls_rwait”);
exit(-1);

}

printf(“task %d finished\n”, tid);
numHosts--;

}

exit(0);
}

The above program set the signal handler for SIGUSR1 to SIG_IGN. This causes the
signal to be ignored. It uses ls_rwait() to poll the status of remote tasks. You could
set a signal handler so that it calls ls_rwait() inside the signal handler.

The task ID could be used to preform an operation on the task. For example, you can
send a signal to a remote task explicitly by calling ls_rkill().
LSF Programmer’s Guide 89

Advanced Programming Topics4
If you want to run the task on remote hosts one after another, instead of concurrently,
you can call ls_rwait() right after ls_rtask().

Also note the use of ls_sysmsg() instead of ls_perror(), which does not allow
flexible printing format.

The above example program produces output similar to the following:

% a.out hostD hostA hostB
Task 1 started on hostD
Task 2 started on hostA
Task 3 started on hostB
Task 1 finished
Task 3 finished
Task 2 finished

Note that remote tasks are run concurrently, so the order in which tasks finish is not
necessarily the same as the order in which tasks are started.

Finding out Why the Job Is Still Pending

‘Getting Information about Batch Jobs’ on page 63 showed how to get information
about submitted jobs. It is frequently desirable to know the reasons why jobs are in
certain status. The LSBLIB provides a function to print such information. This section
describes a routine that prints out why a job is in pending status.

When lsb_readjobinfo() reads a record of a pending job, the variables reasons
and subreasons contained in the returned jobInfoEnt data structure can be used
to call the following LSBLIB function to get the reason text explaining why the job is
still in pending state:

char *lsb_pendreason(pendReasons, subReasons, ld)

where pendReasons and subReasons are integer reason flags as returned by a
lsb_readjobinfo() function while ld is a pointer to the following data structure:

struct loadIndexLog {
int nIdx; Number of load indices configured for the LSF cluster
90

4

char **name; List of the load index names
}

The example program below should be called by your application after
lsb_readjobinfo() is called.

#include <stdio.h>
#include <lsf/lsbatch.h>

char *
reasonToText(reasons, subreasons)

int reasons;
int subreasons;

{
struct loadIndexLog indices;

/* first get the list of all load index names */
indices.name = getIndexList(&indices.nIdx);

return (lsb_pendreason(reasons, subreasons, &indices));

}

A similar routine can be written to print out the reason why a job was suspended. The
corresponding LSBLIB call is:

char *lsb_suspreason(reasons, subreasons, ld)

The parameters for this function are the same as those for thelsb_pendreason()
function.

Reading lsf.conf Parameters

It is frequently desirable for your applications to read the contents of the lsf.conf
file or even define your own site specific variables in the lsf.conf file.

The lsf.conf file follows the syntax of Bourne shell, and therefore could be sourced
by a shell script and set into your environment before starting your C program. Your
program can then get these variables as environment variables.
LSF Programmer’s Guide 91

Advanced Programming Topics4
LSLIB provides a function to read the lsf.conf variables in your C program:

int ls_readconfenv(paramList, confPath)

where confPath is the directory in which the lsf.conf file is stored. paramList is
an array of the following data structure:

struct config_param {
char *paramName; Name of the parameter, input
char *paramValue; Value of the parameter, output

}

ls_readconfenv() reads the values of the parameters defined in lsf.conf
matching the names described in the paramList array. Each resulting value is saved
into the paramValue variable of the array element matching paramName. If a
particular parameter mentioned in the paramList is not defined in lsf.conf, then on
return its value is left NULL.

The following example program reads the variables LSF_CONFDIR, MY_PARAM1, and
MY_PARAM2 in lsf.conf file and displays them on screen. Note that LSF_CONFDIR
is a standard LSF parameter, while the other two parameters are user site-specific. It
assumes lsf.conf is in /etc directory.

#include <stdio.h>
#include <lsf/lsf.h>

struct config_param myParams[] =
{
#define LSF_CONFDIR 0

 {“LSF_CONFDIR”, NULL},
#define MY_PARAM1 1

 {“MY_PARAM1”, NULL),
#define MY_PARAM2 2

 {“MY_PARAM2”, NULL),
 {NULL, NULL}

}

main()
{

if (ls_readconfenv(myParams, “/etc”) < 0) {
ls_perror(“ls_readconfenv”);
exit(-1);
92

4

}

if (myParams[LSF_CONFDIR].paramValue == NULL)
printf(“LSF_CONFDIR is not defined in /etc/lsf.conf\n”);

else
printf(“LSF_CONFDIR=%s\n”, myParams[LSF_CONFDIR].paramValue);

if (myParams[MY_PARAM1].paramValue == NULL)
printf(“MY_PARAM1 is not defined in /etc/lsf.conf\n”);

else
printf(“MY_PARAM1=%s\n”, myParams[MY_PARAM1].paramValue);

if (myParams[MY_PARAM2].paramValue == NULL)
printf(“MY_PARAM2 is not defined\n”);

else
printf(“MY_PARAM2=%s\n”, myParams[MY_PARAM2].paramValue);

exit(0);
}

The paramValue parameter in the config_param data structure must be initialized
to NULL and is then modified to point to a result string if a matching paramName is
found in the lsf.conf file. The array must end with a NULL paramName.

Signal Handling in Windows NT

LSF uses the UNIX signal mechanism to perform job control. For example, the bkill
command in UNIX normally results in the signals SIGINT, SIGTERM, and SIGKILL
being sent to the target job. Signal-handling code that already exists in the in UNIX
applications allows them to shut down gracefully, in stages. In the past, the same bkill
command in Windows NT has been accomplished by a call to TerminateProcess(),
which terminates the application immediately and does not allow it to release shared
resources or clean up the way a UNIX application can.

LSF version 3.2 has been modified to provide signal notification through the Windows
NT message queue. LSF now includes messages corresponding to common UNIX
signals. This means that a customized Windows NT application can process these
messages.
LSF Programmer’s Guide 93

Advanced Programming Topics4
For example, the bkill command now sends the SIGINT and SIGTERM signals to
Windows NT applications as job control messages. An LSF-aware Windows NT
application can interpret these messages and shut down neatly.

To write a Windows NT application that takes advantage of this feature, register the
specific signal messages that the application will handle. Then modify the message
loop to check each message before dispatching it, and take the appropriate action if it
is a job control message.

The following examples show sample code that might help you to write your own
applications.

Job Control in a Windowed Application

This is an example program showing how a windowed application can receive NT job
control notification from the LSF system.

Catching the notification messages involves:

1) Registering the windows messages for the signal(s) that you want to receive (in
this case, SIGTERM).

2) In your GetMessage loop, looking for the message(s) you want to catch.

Note that you can’t DispatchMessage() the message, since it is addressed to the thread,
not the window. This program just displays some information in its main window, and
waits for SIGTERM. Once SIGTERM is received, it posts a quit message and exits. A
real program could do some cleanup when the SIGTERM message is received.

/* WINJCNTL.C */

#include <windows.h>
#include <stdio.h>

#define BUFSIZE 512

static UINT msgSigTerm;

static int xpos;
static int pid_ypos;
static int tid_ypos;
static int msg_ypos;
94

4

static int pid_buf_len;
static int tid_buf_len;
static int msg_buf_len;
static char pid_buf[BUFSIZE];
static char tid_buf[BUFSIZE];
static char msg_buf[BUFSIZE];

LRESULT WINAPI MainWndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

HDC hDC;
PAINTSTRUCT ps;
TEXTMETRIC tm;
switch (msg) {

case WM_CREATE:

hDC = GetDC(hWnd);
GetTextMetrics(hDC, &tm);
ReleaseDC(hWnd, hDC);
xpos = 0;
pid_ypos = 0;
tid_ypos = pid_ypos + tm.tmHeight;
msg_ypos = tid_ypos + tm.tmHeight;
break;

case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);
TextOut(hDC, xpos, pid_ypos, pid_buf, pid_buf_len);
TextOut(hDC, xpos, tid_ypos, tid_buf, tid_buf_len);
TextOut(hDC, xpos, msg_ypos, msg_buf, msg_buf_len);
EndPaint(hWnd, &ps);
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hWnd, msg, wParam, lParam);

}

LSF Programmer’s Guide 95

Advanced Programming Topics4
return 0;
}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
ATOM rc;
WNDCLASS wc;
HWND hWnd;
MSG msg;

/* Create and register a windows class */

if (hPrevInstance == NULL) {
wc.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);

rc = RegisterClass(&wc);
}

/* Register the message we want to catch */

msgSigTerm = RegisterWindowMessage("SIGTERM");

/* Format some output for the main window */
sprintf(pid_buf, "My process ID is: %d", GetCurrentProcessId());
pid_buf_len = strlen(pid_buf);
sprintf(tid_buf, "My thread ID is: %d", GetCurrentThreadId());
tid_buf_len = strlen(tid_buf);
sprintf(msg_buf, "Message ID is: %u", msgSigTerm);
msg_buf_len = strlen(msg_buf);

/* Create the main window */

hWnd = CreateWindow("WinJCntlClass",
"Windows Job Control Demo App",
WS_OVERLAPPEDWINDOW,
96

4

0,
0,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

ShowWindow(hWnd, nCmdShow);

/* Enter the message loop, waiting for msgSigTerm. When we get it, just post a
quit message */

while (GetMessage(&msg, NULL, 0, 0)) {
if (msg.message == msgSigTerm) {

PostQuitMessage(0);
} else {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return msg.wParam;

}

Job Control in a Console Application

This is an example program showing how a console application can receive NT job
control notification from the LSF system.

Catching the notification messages involves:

1) Registering the windows messages for the signals that you want to receive (in this
case, SIGINT and SIGTERM).

2) Creating a message queue by calling PeekMessage (this is how Microsoft suggests
console apps should create message queues).

3) Enter a GetMessage loop, looking for the message you want to catch.

Note that you don’t DispatchMessage here, since you don’t have a window to dispatch
to.
LSF Programmer’s Guide 97

Advanced Programming Topics4
This program just sits in the message loop, waiting for SIGINT and SIGTERM, and
displays messages when those signals are received. A real application would do clean-
up and exit if it received either of these signals.

/* CONJCNTL.C */

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)

{
DWORD pid = GetCurrentProcessId();
DWORD tid = GetCurrentThreadId();
UINT msgSigInt = RegisterWindowMessage("SIGINT");
UINT msgSigTerm = RegisterWindowMessage("SIGTERM");
MSG msg;

/* Make a message queue -- this is the method suggested by MS */

PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
printf("My process id: %d\n", pid);
printf("My thread id: %d\n", tid);
printf("SIGINT message id: %d\n", msgSigInt);
printf("SIGTERM message id: %d\n", msgSigTerm);
printf("Entering loop...\n");
fflush(stdout);

while (GetMessage(&msg, NULL, 0, 0)) {
printf("Received message: %d\n", msg.message);
if (msg.message == msgSigInt) {

printf("SIGINT received, continuing.\n");
} else if (msg.message == msgSigTerm) {

printf("SIGTERM received, continuing.\n");
}
fflush(stdout);

}

printf("Exiting.\n");
fflush(stdout);
return EXIT_SUCCESS;

}

98

A List of LSF API Functions

This appendix lists all the LSF API functions for your reference. Many of the functions
listed below are not documented in this guide, but are described in detail in the on-line
man pages. See lslib(3) and lsblib(3) for details of these functions.

LSLIB Functions

These are the function calls provided by the LSF base system API. The function calls
are listed by service categories.

Cluster Configuration Information

struct lsInfo *ls_info(void)
Get cluster-wide configuration information.

char *ls_getclustername(void)
Get the name of the local cluster.

char *ls_getmastername(void)
Get the name of the master host.

float *ls_getmodelfactor(char *modelname)
Get the CPU factor of the given host model.

char *ls_gethosttype(char *hostname)
Get the host type of the given host.

char *ls_gethostmodel(char *hostname)
Get the host model of the given host.
LSF Programmer’s Guide 99

List of LSF API FunctionsA
float *ls_gethostfactor(char *hostname)
Get the CPU factor of the given host.

struct hostInfo *ls_gethostinfo(char *resreq, int *numhosts,
char **hostlist, int listsize, int options)
Get host related configuration information.

int ls_readconfenv(struct config_param *paramList,
char *confPath)
Get the variables defined in lsf.conf.

Load Information and Placement Advice

struct hostLoad *ls_load(char *resreq, int *numhosts,
int options, char *fromhost)
Get load information of qualified hosts, simple version.

struct hostLoad *ls_loadinfo(char *resreq, int *numhosts,
int options, char *fromhost, char **hostlist,
int listsize, char ***indxnamelist)
Get load information of qualified hosts, generic version.

struct hostLoad *ls_loadofhosts(char *resreq, int *numhosts,
int options, char *fromhost, char **hostlist,
int listsize)
Get load information of the qualified hosts from the given list of hosts.

struct hostLoad *ls_loadoftype(char *resreq, int *numhosts,
int options, char *fromhost, char *hosttype)
Get load information about hosts of the given host type.

char **ls_placereq(char *resreq, int *numhosts, int options,
char *fromhost)
Get the best qualified hosts.

char **ls_placeofhosts(char *resreq, int *numhosts,
int options, char *fromhost, char **hostlist,
int listsize)
Get the best qualified hosts from the given list of hosts.
100

A

char **ls_placeoftype(char *resreq, int *numhosts, int options,
char *fromhost, char *hosttype)
Get the best qualified hosts with the given host type.

int ls_loadadj(char *resreq, struct placeInfo *hostlist,
int listsize)
Adjust the load of the given host(s).

Task List Manipulation

char *ls_resreq(char *task)
Get resource requirements of task in the remote task list.

int ls_eligible(char *task, char *resreqstr, char mode)
Get resource requirements of task in the task list indicated by mode.

int ls_insertrtask(char *task)
Insert task into the remote task list.

int ls_insertltask(char *task)
Insert task into the local task list.

int ls_deletertask(char *task)
Remove task from the remote task list.

int ls_deleteltask(char *task)
Remove task from the local task list.

int ls_listrtask(char ***taskList, int sortflag)
Get all tasks in the remote task list.

int ls_listltask (char ***taskList, int sortflag)
Get all tasks in the local task list.

Remote Execution and Task Control

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.
LSF Programmer’s Guide 101

List of LSF API FunctionsA
int ls_initrex(int numPorts, int options)
Initialize for remote execution or file operation.

int ls_connect(char *hostname)
Establish a connection with a remote RES.

int ls_rexecv(char *host, char **argv, int options)
Remote execv(2). Execute argv on host with the local environment.

int ls_rexecve(char *host, char **argv, int options,
char **envp)
Remote execve(2). Execute argv on host with the given environment.

int ls_rtask(char *host, char **argv, int options)
Start argv on host with local environment.

int ls_rtaske(char *host, char **argv, int options,
char **envp)
Start argv on host with the given environment.

int ls_rwait(LS_WAIT_T *status, int options, struct rusage *ru)
Remote wait(2).

int ls_rwaittid(int tid, LS_WAIT_T *status, int options,
struct rusage *ru)
Remote waitpid(2).

int ls_rkill(int tid, int sig)
Remote kill(2).

int ls_rsetenv(char *host, char **envp)
Reset the environment for remote tasks on host..

int ls_chdir(char *host, char *clntdir)
Set the working directory for remote tasks on host..

int ls_stoprex(void)
Inform the NIOS to suspend itself and restore local tty settings.
102

A

Remote File Operation

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int ls_ropen (char *host, char *fn, int flags, int mode)
Remote open(2) on host.

int ls_rclose(int rfd)
Remote close(2) on host.

int ls_rwrite(int rfd, char *buf, int len)
Remote write(2) on host.

int ls_rread(int rfd, char *buf, int len)
Remote read(2) on host.

off_t ls_rlseek(int rfd, off_t offset, int whence)
Remote lseek(2) on host.

int ls_rfstat(int rfd, struct stat *buf)
Remote fstat(2) on host.

int ls_rstat(char *host, char *fn, struct stat *buf)
Remote stat(2) on host.

int ls_getmnthost(char *file)
Returns the host name of the file server for file.

char *ls_rgetmnthost(char *host, char *file)
Return the host name of the file server for file on host.

int ls_rfcontrol(int command, int arg)
Control the behavior of remote file operations.
LSF Programmer’s Guide 103

List of LSF API FunctionsA
Administration Operation

int ls_lockhost(time_t duration)
Set LIM status of the local host to “locked” for duration seconds. The application
must be a setuid to root program to use this function.

int ls_unlockhost(void)
Cancel a previous lock operation. The application must be a setuid to root
program to use this function.

int ls_limcontrol(char *hostname, int opCode)
Perform a LIM administration operation as specified by opCode. The
application must be a setuid to root program to use this function.

int ls_rescontrol(char *host, int opCode, int options)
Perform a RES administrative operation as specified by opCode. The use of
this function is subject to authentication protocols described in
‘Authentication’ on page 17.

Error Handling

void ls_perror(char *usrMsg)
Print usrMsg followed by the LSLIB error message associated with lserrno.

char *ls_sysmsg(void)
Return the LSLIB error message associated with lserrno.

void ls_errlog(FILE *fp, const char *fmt, ...)
Logging an LSLIB error message with time stamp.

Miscellaneous

int ls_fdbusy(int fd)
Test if a file descriptor fd is in use or reserved by LSF.
104

A

LSBLIB Functions

These are function calls provided by the LSF Batch system API. The functions are listed
by service categories.

Initialization

lsb_init(char *appName)
Initialize an LSF Batch application.

LSF Batch System Information

struct groupInfoEnt *lsb_hostgrpinfo(char **groups,
int *numGroups, int options)
Get membership of the LSF Batch host groups.

struct groupInfoEnt *lsb_usergrpinfo(char **groups,
int *numGroups, int options)
Get membership of the LSF Batch user groups.

struct parameterInfo *lsb_parameterinfo(char **names,
int *numUsers, int options)
Get the LSF Batch cluster parameters.

struct hostInfoEnt *lsb_hostinfo(char **hosts, int *numHosts)
Get information about the LSF Batch server hosts or host groups.

struct userInfoEnt *lsb_userinfo(char **users, int *numUsers)
Get system information about the LSF Batch users and user groups.

struct hostPartInfoEnt *lsb_hostpartinfo(char **hostParts,
int *numHostParts)
Get information about the LSF Batch host partitions.

.struct queueInfoEnt *lsb_queueinfo(char **queues,
int *numQueues, char *host, char *userName, int options)
Get information about the LSF Batch queues.
LSF Programmer’s Guide 105

List of LSF API FunctionsA
Job Manipulation

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int lsb_submit(struct submit *jobSubReq,
struct submitReply *jobSubReply)
Submit a job to the LSF Batch system.

int lsb_modify(struct submit *jobSubReq,
struct submitReply *jobSubReply, int jobId)
Change the attributes of an already submitted job.

int lsb_signaljob(int jobId, int sigValue)
Send job jobId signal sigValue.

int lsb_chkpntjob (int jobId, time_t period, int options)
Checkpoint the job jobId.

int lsb_deletejob (int jobId, int times, int options)
Delete a calendar-driven job.

int lsb_mig(struct submig *mig, int *badHostIdx)
Migrate a job from one host to another.

int lsb_movejob(int jobId, int *position, int opCode)
Change the position of a pending job within its queue.

int lsb_switchjob(int jobId, char *queue)
Switch a job jobId to queue queue.

Job Information

int lsb_openjobinfo(int jobId, char *jobName, char *user,
char *queue, char *host, int options)
Open a job information stream for the matching job(s) with mbatchd.

struct jobInfoEnt *lsb_readjobinfo(int *more)
Read a job record from the opened job information stream.
106

A

void lsb_closejobinfo(void)
Close a job information stream.

char *lsb_suspreason(int reasons, int subreasons,
struct loadIndexLog *ld)
Convert suspending reason codes into text.

char *lsb_pendreason(int reasons, int subreasons,
struct loadIndexLog *ld)
Convert pending reason codes into text.

char *lsb_peekjob(int jobId)
Get the name of the job’s buffered output file. This function is subject to the
authentication protocols described in ‘Authentication’ on page 17.

Event File Processing

struct eventRec *lsb_geteventrec(FILE *log_fp, int *lineNum)
Read an event record from the opened log file.

LSF Batch Administration

These functions are subject to the authentication protocols described in
‘Authentication’ on page 17.

int lsb_reconfig(void)
Reconfigure the LSF Batch system using the current configuration files.

int lsb_hostcontrol(char *host, int opCode)
Open, close host for batch jobs, or restart, shut down sbatchd on host.

int lsb_queuecontrol(char *queue, int opCode)
Change the status of an LSF Batch queue.

Calendar Manipulation

These functions can be used only if the LSF JobScheduler component is enabled.
LSF Programmer’s Guide 107

List of LSF API FunctionsA
int lsb_calendarop(int opCode, int numNames, char **names,
char *desc, char *timeEvents, int options, char **badStr)
Add, modify, or delete a calendar.

struct calendarInfoEnt *lsb_calendarinfo(char **calendars,
int *numCalendars, char *user)
Get calendar information.

Error Handling

void lsb_perror(char *usrMsg)
Print the LSBLIB error message associated with lsberrno together with
usrMsg.

char *lsb_sysmsg (void)
Return the LSBLIB error message associated with lsberrno.
108

Index

A E
address (Platform) xi
authentication . 17

privileged port 17

B

batch job
ID . 64
information. 63

batch server host. 5, 48
bhist . 76
BSD compatibility library 13
built-in load indices 83

C

cluster configuration information 19
console application

Windows NT 97
contacting Platform Computing. xi
CPU factor . 20

D

default queue . 48
default resource requirements 25, 60
DEFAULT_RLIMIT 60
documentation . x
dynamic load information. 28

host-based resource. 28
shared resource 32
LSF Programmer’s Guide
effective user ID. 43
ELIM (External LIM). 83
error handling . 14
event record . 75
external load indices 85

F

fax numbers (Platform) xi
force a job . 73
functions

ls_getclustername() 15
ls_gethostfactor() 25
ls_gethostinfo() 23
ls_gethostmodel() 25
ls_gethosttype() 25
ls_getmastername() 20
ls_info() 19, 84
ls_initrex() 42
ls_load() 28, 83
ls_loadinfo() 85
ls_perror() 15, 90
ls_placeofhosts() 38
ls_placereq() 37
ls_readconfenv() 92
ls_resreq() 39, 45
ls_rexecv() 43, 87
ls_rexecve() 44
ls_rkill() 89
ls_rtask() 87
ls_rwait() 87
ls_stoprex() 88
ls_sysmsg() 15, 90
109

Index
lsb_closejobinfo() 67
lsb_geteventrec() 75
lsb_hostinfo() 52
lsb_init() 17, 47
lsb_modify() 56
lsb_openjobinfo() 65
lsb_parameterinfo() 16
lsb_pendreason() 68, 90
lsb_perror() 15, 51
lsb_queueinfo() 48, 50
lsb_readjobinfo() 65, 90
lsb_signaljob() 71
lsb_submit() 56
lsb_suspreason() 91
lsb_switchjob() 72

G

guides . x

H

header files
lsbatch.h 13
lsf.h . 12

help . x, xi
host-based resource information 28
host configuration information 23
host dispatch window 55
host model . 20
host type. 20

I

ID, batch job . 64
110
J

job
force . 73
ID . 64

job accounting information 81
job control. 93

console application 97
windowed application 94

job ID. 71
job information connection 64
job modification. 56
job records . 63
job submission . 56
jobInfoEnt . 67
job-related events 76

L

LIM (Load Information Manager) 3
linking applications with LSF APIs . . 13
load index names 32, 84
load threshold values 50
lsb.acct . 75, 77
lsb.events . 75
LSB_ARRAY_IDX 64
LSB_ARRAY_JOBID 64
LSB_JOBID . 64
lsb_runjob . 73
lsb_submit() 63
lsbatch.h

ALL_JOB . 65
CUR_JOB . 65
DONE_JOB . 65
HOST_STAT_BUSY 55
HOST_STAT_DISABLED 55
HOST_STAT_FULL 55
HOST_STAT_LOCKED 55
HOST_STAT_NO_LIM 55

HOST_STAT_OK 56
HOST_STAT_UNAVAIL 55
HOST_STAT_UNLICENSED 55
HOST_STAT_UNREACH 55
HOST_STAT_WIND 55
JGRP_ARRAY_INFO 65
LAST_JOB . 65
PEND_JOB . 65
SUSP_JOB . 65

lsberrno . 15
LSBE_EOF . 76
LSBE_QUEUE_CLOSED 61
LSBE_QUEUE_USE 60

lserrno . 15
LSF administrator. 55
LSF architecture . 1
LSF Base . 1

administrative service. 10
API services . 7
application . 4
configuration information service . 8
dynamic load information service . 8
master selection service 9
placement advice service 8
remote execution service 9
remote file operation service 10
server host . 3
task list manipulation service 9

LSF Base library . 2
LSF Batch . 1

administration service 11
job manipulation service 11
log file processing service 11
server hosts. 5
structure of . 5

LSF Batch library 3
LSF Enterprise Edition. x
LSF JobScheduler 7

calendar manipulation service . . . 11
LSF Product Suite 1
LSF Programmer’s Guide
LSF Standard Edition x
LSF Suite documentation x
LSF Suite products ix
lsf.conf . 12, 91

LSF_AUTH . 43
LSF_CONFDIR 92

lsf.h
DEFAULT_RLIMIT 60
DFT_FROMTYPE 29
EFFECTIVE 29
EXACT . 29
FIRST_RES_SOCK 43
INFINIT_INT 51, 56
INFINIT_LOAD 31
KEEPUID . 43
LSF_DEFAULT_SOCKS 43
LSF_RLIM_NLIMITS 58
NORMALIZE 29
OK_ONLY . 29
REXF_USEPTY 44

lsrtasks . 38
lsrun . 45

M

macros
LS_ISBUSY() 32
LS_ISBUSYON() 32
LS_ISLOCKED() 32
LS_ISOK() 32
LS_ISUNAVAIL() 32

mailing address (Platform) xi
master LIM . 3
mbatchd . 5
modify submitted job 63

N

NIOS (Network I/O Server) . . . 9, 40, 87
111

Index
NT
console application 97
job control. 93
signal handling 93
windowed application 94

number of load indices 84

O

online documentation xi
order requirement 26

P

parallel applications. 86
phone numbers (Platform) xi
placement decision. 36
Platform Computing Corporation xi
privileged port protocol 17
Production Job Scheduler, see LSF

JobScheduler
pseudo-terminal 40, 44

R

raw run queue length 29
real user ID . 43
reason flags . 90
remote execution 40
remote task list 38, 59
RES (Remote Execution Server) 3, 40
resource information

dynamic host based 28
dynamic shared 32

resource names . 25
112
S

sbatchd . 5
send signals to submitted jobs 71
setuid programs. 17
shared resource information 32
SIGINT . 94
signal handler 88, 89
signal handling

Windows NT. 93
SIGTERM . 94
SIGUSR1 . 87
structure

hostInfo . 23
hostInfoEnt 52
queueInfoEnt 48
submit . 56
submitReply 57

support . xi
switch a job. 72
system-related events 76

T

task ID. 87
task list . 9
technical assistance xi
telephone numbers (Platform) xi
type requirement. 26

W

windowed application
Windows NT. 94

Windows NT . 14
console application 97
job control . 93
signal handling. 93
windowed application 94

	Preface
	Audience
	LSF Suite 3.2
	Related Documents
	Technical Assistance

	1 Introduction
	LSF Product Suite and Architecture
	LSF Base
	LSF Batch
	LSF JobScheduler
	LSF MultiCluster
	LSF Base System
	Application and LSF Base Interactions
	LSF Batch System
	LSF JobScheduler System

	LSF API Services
	LSF Base API Services
	Configuration Information Service
	Dynamic Load Information Service
	Placement Advice Service
	Task List Manipulation Service
	Master Selection Service
	Remote Execution Service
	Remote File Operation Service
	Administration Service

	LSF Batch API Services
	LSF Batch System Information Service
	Job Manipulation Service
	Log File Processing Service
	LSF Batch Administration Service
	Calendar Manipulation Service

	Getting Started with LSF Programming
	lsf.conf File
	LSF Header Files
	lsf.h
	lsbatch.h

	Linking Applications with LSF APIs
	Error Handling
	lserrno
	lsberrno

	Example Applications
	Example Application using LSLIB
	Example Application using LSBLIB

	Authentication

	2 Programming with LSLIB
	Getting Configuration Information
	Getting General Cluster Configuration Information
	Getting Host Configuration Information

	Handling Default Resource Requirements
	Getting Dynamic Load Information
	Getting Dynamic Host-Based Resource Information
	Getting Dynamic Shared Resource Information

	Making a Placement Decision
	Getting Task Resource Requirements
	Using Remote Execution Services
	Remote Execution Mechanisms
	Initializing an Application for Remote Execution
	Running a Task Remotely

	3 Programming with LSBLIB
	Initializing LSF Batch Applications
	Getting Information about LSF Batch Queues
	Getting Information about LSF Batch Hosts
	Job Submission and Modification
	Getting Information about Batch Jobs
	LSF Batch Job ID

	Job Manipulation
	Sending a Signal To a Job
	Switching a Job To a Different Queue
	Forcing a Job to Run

	Processing LSF Batch Log Files

	4 Advanced Programming Topics
	Getting Load Information on Selected Load Indices
	Getting a List of All Load Index Names
	Displaying Selected Load Indices

	Writing a Parallel Application
	ls_rtask() Function
	Running Tasks on Many Machines

	Finding out Why the Job Is Still Pending
	Reading lsf.conf Parameters
	Signal Handling in Windows NT
	Job Control in a Windowed Application
	Job Control in a Console Application

	A List of LSF API Functions
	LSLIB Functions
	Cluster Configuration Information
	Load Information and Placement Advice
	Task List Manipulation
	Remote Execution and Task Control
	Remote File Operation
	Administration Operation
	Error Handling
	Miscellaneous

	LSBLIB Functions
	Initialization
	LSF Batch System Information
	Job Manipulation
	Job Information
	Event File Processing
	LSF Batch Administration
	Calendar Manipulation
	Error Handling

	Index

